1
|
Saeed S, Farooq M, Arshad R, Adnan S, Ahmad H, Masood Z, Malik A, Saeed A, Tabish TA. Responding to Hitch in Fighting Mycobacterium Tuberculosis Through Arginine Multi Functionalized Mucoadhesive SNEDDS of Rifampicin. Macromol Biosci 2024:e2400288. [PMID: 39319685 DOI: 10.1002/mabi.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Indexed: 09/26/2024]
Abstract
The study aimed to develop thiolated pluronic-based self-emulsifying drug delivery system (SNEDDS) targeted delivery of Rifampicin coated by arginine for enhanced drug loading, mucoadhesion, muco penetration, site-specific delivery, stabilized delivery against intracellular mycobacterium tuberculosis (M. tb), decreased bacterial burden and production by intracellular targeting. Oleic oil, PEG 200 and Tween 80 are selected as oil, co-surfactant and surfactant based on solubilizing capacity and pseudo ternary diagram region. Coating of thiolated polymer on SNEDDS with ligand arginine (Arg-Th-F407 SNEDDDS) decreased bacterial burden and production by intracellular targeting in macrophages. Formulation are evaluated through scanning electron microscope (SEM), EDAX analysis, diffraction laser scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and thermal analysis (DSC & TGA). Hydrodynamic diameter of thiolated polymeric SNEDDS (Th-F407 SNEDDS) and Arg-Th-F407 SNEDDS is observed to be 148.4 and 188.5 nm with low PDI of 0.4 and 0.3, respectively. Invitro drug release study from Arg-Th-F407 SNEDDS indicates 80% sustained release in 72 h under controlled conditions. Arg-Th-F407 SNEDDDS shows excellent capability of killing M.tb strains in macrophages even at low dose as compared to traditional rifampicin (RIF) and is found biocompatible, non-cytotoxic, and hemocompatible. Therefore, Arg-Th-F407 SNEDDDS of RIF proved ideal for targeting and treating M.tb strains within macrophages.
Collapse
Affiliation(s)
- Sana Saeed
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
| | - Muhammad Farooq
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
- School of Pharmacy, Multan University of Science and Technology, Multan, 60000, Pakistan
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
- Adjunct Faculty at Equator University of Science and Technology, Kampala, 21353, Uganda
| | - Sherjeel Adnan
- Faculty of Pharmacy, Grand Asian University Sialkot, Sialkot, 51040, Pakistan
| | - Hammad Ahmad
- Sialkot Institute of Science and Technology, Sialkot, 51070, Pakistan
| | - Zeeshan Masood
- School of Pharmacy, Multan University of Science and Technology, Multan, 60000, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Ayesha Saeed
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Alfaraj R, Hababah S, Eltayb EK, Alqahtani FY, Aleanizy FS. Isotretinoin self-nano-emulsifying drug delivery system: Preparation, optimization and antibacterial evaluation. Saudi Pharm J 2024; 32:102063. [PMID: 38650911 PMCID: PMC11033190 DOI: 10.1016/j.jsps.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose Isotretinoin (ITN) is a poorly water-soluble drug. The objective of this study was to design a successful liquid self-nanoemulsifying drug delivery system (L-SNEDDS) for ITN to improve its solubility, dissolution rate, and antibacterial activity. Methods According to solubility and emulsification studies, castor oil, Cremophor EL, and Transcutol HP were selected as system excipients. A pseudo ternary phase diagram was constructed to reveal the self-emulsification area. The developed SNEDDS were visually assessed, and the droplet size was measured. In vitro release studies and stability studies were conducted. The antimicrobial effectiveness against multiple bacterial strains, including Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and different accessory gene regulator (Agr) variants were investigated for the optimum ITN-loaded SNEDDS formulation. Results Characterization studies showed emulsion homogeneity and stability (%T 95.40-99.20, A graded) with low droplet sizes (31.87 ± 1.23 nm-115.47 ± 0.36 nm). It was found that the developed ITN-SNEDDS provided significantly a higher release rate (>96 % in 1 h) as compared to the raw drug (<10 % in 1 h). The in vitro antimicrobial activities of pure ITN and ITN-loaded SNEDDS demonstrated a remarkable inhibitory effect on bacterial growth with statistically significant findings (p < 0.0001) for all tested strains when treated with ITN-SNEDDS as compared to the raw drug. Conclusion These outcomes suggested that SNEDDS could be a potential approach for improving solubility, dissolution rates, and antibacterial activity of ITN.
Collapse
Affiliation(s)
- Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Sandra Hababah
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Esra K. Eltayb
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Fadilah S. Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Mohite P, Joshi A, Singh S, Prajapati B. Solubility enhancement of fexofenadine using self-nano emulsifying drug delivery system for improved biomimetic attributes. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:433-445. [PMID: 37832935 DOI: 10.1016/j.pharma.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Fexofenadine is a poorly water-soluble drug, which limit its bioavailability and ultimately therapeutic efficacy. Liquid self-nano emulsifying drug delivery system (L-SNEDDs) is an approach that can enhance the solubility of fexofenadine by increasing its surface area and reducing the particle size, which increases the rate and extent of drug dissolution. METHOD In this investigation, L-SNEDDs of fexofenadine was made up using surfactants and co-surfactant. The SNEDDS formulation was optimized using a pseudo-ternary phase diagram and characterized. RESULTS The optimized L-SNEDDS incorporated fexofenadine were thermodynamically stable and showed mean droplet size and zeta potential of 155nm and -18mV, respectively unaffected by the media pH. In addition, the viscosity, and refractive index were observed 18.4 and 1.49 cps, respectively for optimized L-SNEDDS fortified fexofenadine. The results of Fourier transform infrared spectroscopy revealed an insignificant interaction between the fexofenadine and excipients. A drug loading efficiency of 94.20% resulted with a complete in vitro drug release in 2h, compared with the pure drug, which demonstrate significant improvement in the efficacy. Moreover, these results signify that on further in vivo assessment L-SNEDDS fortified fexofenadine can indicate improvement in pharmacokinetic and clinical outcome. CONCLUSION Thus, the investigation revealed that, the L-SNEDDs incorporated fexofenadine was most effective with a mixture of surfactant and co-surfactant with improved solubility intend to relieve pain associated with inflammation with single-dose oral administration.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India.
| | - Anjali Joshi
- MES's College of Pharmacy, Sonai, Ahmednagar, Maharashtra, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, 50200 Chiang Mai Thailand; Office of Research Administration, Chiang Mai University, 50200 Chiang Mai Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
4
|
Algahtani MS, Mohammed AA, Ahmad J, Ali R, Saleh E. 3D printed capsule shells for personalized dosing of cyclosporine-loaded SNEDDS. Int J Pharm 2024; 650:123707. [PMID: 38101759 DOI: 10.1016/j.ijpharm.2023.123707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cyclosporine (CsA) is a potent immunosuppressant agent that has been used since 1980 for the treatment of various autoimmune diseases and is extensively used to enhance the survival rate of patients and grafts following organ transplant surgeries. CsA is a poorly soluble drug with a narrow therapeutic window and inter-subject variability, which can lead to graft rejection, nephrotoxicity and other severe adverse effects. This study explores a novel method that combines solubility enhancement of CsA using SNEDDS formulation and personalized dosage delivery using 3D printing technology. The oil phase was chosen as a combination of caproyl 90 and octanoic acid while the Smix phase was chosen as a combination of cremophore El and PEG 400. The optimized liquid SNEDDS was solidified using PEG 6000. An FDM printer was used to print a capsular shell with an oval base that ascends to form a dome with an opening at the top. This opening is used to fill the molten CsA-loaded SNEDDS formulation using a pipette or syringe. The CsA-loaded SNEDDS formulation was characterized by FTIR, DSC and SEM/EDX. The in-vitro release of CsA showed complete release within sixty minutes and followed Korsmeyer-Peppas release kinetics. The drug release was not affected by either the shell opening size or the amount of the loaded formulation. This novel method is simple and straightforward for personalized dosage delivery of drug-loaded SNEDDS formulations.
Collapse
Affiliation(s)
- Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia.
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab Saleh
- Future Manufacturing Processes Research Group, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
5
|
Arshad R, Arshad MS, Malik A, Alkholief M, Akhtar S, Tabish TA, Moghadam AA, Rahdar A, Díez-Pascual AM. Mannosylated preactivated hyaluronic acid-based nanostructures for bacterial infection treatment. Int J Biol Macromol 2023; 242:124741. [PMID: 37156311 DOI: 10.1016/j.ijbiomac.2023.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Salmonella Typhi is an intracellular bacterium causing a variety of enteric diseases, being typhoid fever the most common. Current modalities for treating S. typhi infection are subjected to multi-drug resistance. Herein, a novel macrophage targeting approach was developed via coating bioinspired mannosylated preactivated hyaluronic acid (Man-PTHA) ligands on a self-nanoemulsifying drug delivery system (SNEDDS) loaded with the anti-bacterial drug ciprofloxacin (CIP). The shake flask method was used to determine the drug solubility in the different excipients (oil, surfactants and co-surfactants). Man-PTHA were characterized by physicochemical, in vitro, and in vivo parameters. The mean droplet size was 257 nm, with a PDI of 0.37 and zeta potential of -15 mV. In 72 h, 85 % of the drug was released in a sustained manner, and the entrapment efficiency was 95 %. Outstanding biocompatibility, mucoadhesion, muco-penetration, anti-bacterial action and hemocompatibility were observed. Intra-macrophage survival of S. typhi was minimal (1 %) with maximum nanoparticle uptake, as shown by their higher fluorescence intensity. Serum biochemistry evaluation showed no significant changes or toxicity, and histopathological evaluation confirmed the entero-protective nature of the bioinspired polymers. Overall, results confirm that Man-PTHA SNEDDS can be employed as novel and effective delivery systems for the therapeutic management of S. typhi infection.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan.
| | | | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, MO, USA.
| | - Tanveer A Tabish
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, 28805 Madrid, Spain.
| |
Collapse
|