1
|
Zhang M, Cheng Y, Li H, Li M, Yang Q, Hua K, Wen X, Han Y, Liu G, Chu C. Metallic nano-warriors: Innovations in nanoparticle-based ocular antimicrobials. Mater Today Bio 2024; 28:101242. [PMID: 39315395 PMCID: PMC11419815 DOI: 10.1016/j.mtbio.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Eye infection is one of the most important causes of blindness. Due to the particularity of ocular structure, the enhancement of bacteria resistance, and the significant side effects of long-term medication, it is difficult to treat ocular antimicrobial diseases. The efficacy of medications currently employed is progressively becoming more restricted. The research and development of novel antimicrobial drugs is imperative and imminent in order to overcome the bottleneck problem. Metal nanoparticles have been developed rapidly in the field of biomedicine because of their brilliant antibacterial activity, long-lasting effect, and great bioavailability. Efficacy and biosafety proven in in vitro and in vivo experiments demonstrate the promising prospect of metal nanoparticles for ocular antimicrobial therapy. Based on the development status of antibacterial metal nanoparticles in ophthalmology, we summarized the antibacterial mechanism of metal nanoparticles and the application of nano-antibacterial drugs in this field, emphasizing their advantages over conventional drugs, thus guiding clinical ophthalmic antibacterial therapy.
Collapse
Affiliation(s)
- Mingyou Zhang
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, China
| | - Yuhang Cheng
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, China
| | - Hongjin Li
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, China
| | - Mengdie Li
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, China
| | - Qixiang Yang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, China
| | - Kaifang Hua
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, China
| | - Xiaofei Wen
- Department of Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen, Fujian, 361000, China
| | - Yun Han
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, China
| | - Gang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces & the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361002, China
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Chengchao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces & the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361002, China
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
2
|
Sun R, Zhang J, Chen X, Deng Y, Gou J, Yin T, He H, Tang X, Ni X, Yang L, Zhang Y. An adaptive drug-releasing contact lens for personalized treatment of ocular infections and injuries. J Control Release 2024; 369:114-127. [PMID: 38521167 DOI: 10.1016/j.jconrel.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
This research introduces an innovative solution to address the challenges of bacterial keratitis and alkali burns. Current treatments for bacterial keratitis and alkali burns rely on the frequent use of antibiotics and anti-inflammatory eye drops. However, these approaches suffer from poor bioavailability and fluctuating concentrations, leading to limited efficacy and potential drug resistance. Our approach presents an adaptive drug-releasing contact lens responsive to reactive oxygen species (ROS) at ocular inflammation sites, synchronously releasing Levofloxacin and Diclofenac. During storage, minimal drug release occurred, but over 7 days of wear, the lens maintained a continuous, customizable drug release rate based on disease severity. This contact lens had strong antibacterial activity and biofilm prevention, effectively treating bacterial keratitis. When combined with autologous serum, this hydrophilic, flexible lens aids corneal epithelial regeneration, reducing irritation and promoting healing. In summary, this ROS-responsive drug-releasing contact lens combines antibacterial and anti-inflammatory effects, offering a promising solution for bacterial keratitis and alkali burns.
Collapse
Affiliation(s)
- Rong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xi Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xianpu Ni
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Li Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
3
|
Almutleb ES, Ramachandran S, Khan AA, El-Hiti GA, Alanazi SA. Synergistic Effect of Nilavembu Choornam-Gold Nanoparticles on Antibiotic-Resistant Bacterial Susceptibility and Contact Lens Contamination-Associated Infectious Pathogenicity. Int J Mol Sci 2024; 25:2115. [PMID: 38396792 PMCID: PMC10889799 DOI: 10.3390/ijms25042115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Antibiotic-resistant bacterial colonies mitigate rapid biofilm formation and have complex cell wall fabrications, making it challenging to penetrate drugs across their biofilm barriers. The objective of this study was to investigate the antibacterial susceptibility of antibiotic-resistant bacteria and contact lens barrenness. Nilavembu Choornam-Gold Nanoparticles (NC-GNPs) were synthesized using NC polyherbal extract and characterized by UV-visible spectrophotometer, SEM-EDX, XRD, Zeta sizer, FTIR, and TEM analysis. Contact lenses with overnight cultures of antibiotic-resistant bacteria K. pneumoniae and S. aureus showed significant differences in growth, biofilm formation, and infection pathogenicity. The NC-GNPs were observed in terms of size (average size is 57.6 nm) and surface chemistry. A zone of inhibition was calculated for K. pneumoniae 18.8 ± 1.06, S. aureus 23.6 ± 1.15, P. aeruginosa 24.16 ± 0.87, and E. faecalis 24.5 ± 1.54 mm at 24 h of NC-GNPs alone treatment. In electron microscopy studies, NC-GNP-treated groups showed nuclear shrinkage, nuclear disintegration, degeneration of cell walls, and inhibited chromosomal division. In contrast, normal bacterial colonies had a higher number of cell divisions and routinely migrated toward cell multiplications. NC-GNPs exhibited antibacterial efficacy against antibiotic-resistant bacteria when compared to NC extract alone. We suggest that NC-GNPs are highly valuable to the population of hospitalized patients and other people to reduce the primary complications of contact lens contamination-oriented microbial infection and the therapeutic efficiency of antibiotic-resistant bacterial pathogenicity.
Collapse
Affiliation(s)
| | - Samivel Ramachandran
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (E.S.A.); (A.A.K.); (G.A.E.-H.); (S.A.A.)
| | | | | | | |
Collapse
|
4
|
Negut I, Bita B. Exploring the Potential of Artificial Intelligence for Hydrogel Development-A Short Review. Gels 2023; 9:845. [PMID: 37998936 PMCID: PMC10670215 DOI: 10.3390/gels9110845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
AI and ML have emerged as transformative tools in various scientific domains, including hydrogel design. This work explores the integration of AI and ML techniques in the realm of hydrogel development, highlighting their significance in enhancing the design, characterisation, and optimisation of hydrogels for diverse applications. We introduced the concept of AI train hydrogel design, underscoring its potential to decode intricate relationships between hydrogel compositions, structures, and properties from complex data sets. In this work, we outlined classical physical and chemical techniques in hydrogel design, setting the stage for AI/ML advancements. These methods provide a foundational understanding for the subsequent AI-driven innovations. Numerical and analytical methods empowered by AI/ML were also included. These computational tools enable predictive simulations of hydrogel behaviour under varying conditions, aiding in property customisation. We also emphasised AI's impact, elucidating its role in rapid material discovery, precise property predictions, and optimal design. ML techniques like neural networks and support vector machines that expedite pattern recognition and predictive modelling using vast datasets, advancing hydrogel formulation discovery are also presented. AI and ML's have a transformative influence on hydrogel design. AI and ML have revolutionised hydrogel design by expediting material discovery, optimising properties, reducing costs, and enabling precise customisation. These technologies have the potential to address pressing healthcare and biomedical challenges, offering innovative solutions for drug delivery, tissue engineering, wound healing, and more. By harmonising computational insights with classical techniques, researchers can unlock unprecedented hydrogel potentials, tailoring solutions for diverse applications.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| |
Collapse
|