1
|
Sim YS, Wong LC, Yeoh SC, Almashhadani A, Alrimawi BH, Goh CF. Skin penetration enhancers: Mechanistic understanding and their selection for formulation and design. Drug Deliv Transl Res 2025:10.1007/s13346-025-01809-9. [PMID: 39982640 DOI: 10.1007/s13346-025-01809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
The skin functions as a formidable barrier, particularly the stratum corneum, effectively restricting the penetration of most substances, including therapeutic agents. To circumvent this barrier, skin penetration enhancers (SPEs) are frequently employed to transiently increase skin permeability, facilitating drug absorption without causing irritation or damage. Despite advancements in dermal formulation development, a deeper understanding of the fundamental science underpinning drug delivery via SPEs remains essential. This review delivers a critical update on conventional SPEs, exploring their mechanisms in promoting drug permeation across the skin. In addition to offering an overview of percutaneous drug delivery, we examine the prevailing theories on how SPEs enhance drug transport. Furthermore, we address the intricate interplay between SPEs, drugs and the skin, providing valuable insights into how the molecular properties and permeation behaviours of SPEs influence their efficacy. This comprehensive review aims to support the ongoing development of optimised drug delivery systems for dermal applications by elucidating the complexities and challenges involved in using SPEs effectively.
Collapse
Affiliation(s)
- Yee Shan Sim
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Li Ching Wong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Soo Chin Yeoh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Abdulsalam Almashhadani
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Bilal Harieth Alrimawi
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
2
|
Tang H, Wang F, Yang R, Zhao Z, Zhang Y, Yang L, Li B. Baricitinib-loaded EVs promote alopecia areata mouse hair regrowth by reducing JAK-STAT-mediated inflammation and promoting hair follicle regeneration. Drug Discov Ther 2025; 18:368-374. [PMID: 39662932 DOI: 10.5582/ddt.2024.01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Alopecia areata (AA) is a common and recurrent type of hair loss. Despite oral administration of baricitinib exerts a good effect on refractory AA, the long-term administration of baricitinib carries significant side effects, poor compliance, and the efficacy is difficult to maintain after drug withdrawal. Therefore, the exploration of a safe and effective local administration of baricitinib to treat AA is of great clinical importance. However, baricitinib has a large molecular weight and is barely soluble in water, while the hair follicle lies deep, thus conventional topical dosage forms are ineffective. This study investigated the efficacy of local injection of baricitinib-loaded mesenchymal stem cell exosomes (EVs) in the treatment of AA. First, we constructed baricitinib loaded EVs (EV-B) and established AA mouse model by intravenously injection with murine INF-γ according to previous literature reports. The therapeutic effects of EV-B on hair regrowth were recorded and the underlying mechanism was also analyzed by Luminex protein biochip test and western-blot. Compared to control group, the baricitinib, EV and EV-B groups exhibited improved hair coverage in the AA mouse model. Besides, EV-B group achieved the optimal effect. The underlying mechanism might be attributed to the improvement of drug delivery efficiency as well as the synergistic effect of EVs, leading to better inhibition of JAK-STAT pathway and upregulation of the Wnt/β-catenin pathway. Our findings proved the effectiveness of EV-B on the treatment of AA, and might provide a new therapeutic approach for AA in future clinical application.
Collapse
Affiliation(s)
- Haowen Tang
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fangfang Wang
- The 55th retirement of Haidian district affiliated to Beijing Garrison, Beijing, China
| | - Rui Yang
- School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Zhao
- School of clinical medicine, China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bingmin Li
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Pérez-González N, Morales-Molina JA, Calpena-Campmany AC, Halbaut L, Rodríguez-Lagunas MJ, Bozal-de Febrer N, Souto EB, Mallandrich M, Clares-Naveros B. Caspofungin formulations for buccal and sublingual mucosae anti-fungal infections: physicochemical characterization, rheological analysis, release and ex vivo permeability profiles. Pharm Dev Technol 2024; 29:1042-1063. [PMID: 39387661 DOI: 10.1080/10837450.2024.2415545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
AIM Oral candidiasis is often challenging due to limited effectiveness of topical treatments. This study aimed to develop novel caspofungin formulations for administration onto the oral mucosa to enhance drug retention and efficacy. METHOD Five caspofungin (2%, w/v) formulations were developed to assess their permeability, retention and mucoadhesiveness. Ex vivo permeability assays were performed on buccal and sublingual mucosae, and histological analyses conducted to evaluate tissue tolerance. RESULTS Formulation composed of chitosan demonstrated the highest retention in both buccal (5183.24 ± 587.32 µg/cm2) and sublingual (1090.72 ± 110.26 µg/cm2) mucosae. Other formulations exhibited significantly lower retention, ranging from 7.53 ± 0.81 to 1852.10 ± 193.24 µg/cm2 in buccal mucosa and 1.64 ± 0.14 to 317.74 ± 31.78 µg/cm2 in sublingual mucosa. Chitosan-based formulation exhibited the highest mucoadhesive strength, with values of 5179.05 ± 31.99 mN/cm2 for buccal and 7026.10 ± 123.41 mN/cm2 for sublingual mucosae, and also superior extensibility, which facilitates application in the oral cavity. All formulations showed antifungal activity against Candida spp., and histological analyses revealed minor epithelial alterations. CONCLUSION The developed formulations offer distinct advantages for treating oral candidiasis, with chitosan formulation emerging as the most promising due to its superior retention, mucoadhesion force, and spreadability, making it a potential candidate for further clinical investigation.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - José A Morales-Molina
- Pharmacy Department; Biomedical Research Unit, Torrecárdenas University Hospital, Almería, Spain
| | - Ana C Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - María J Rodríguez-Lagunas
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute of University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Ireland
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
4
|
Mohammadi-Meyabadi R, Mallandrich M, Beirampour N, Garrós N, Espinoza LC, Sosa L, Suñer-Carbó J, Rodríguez-Lagunas MJ, Garduño-Ramírez ML, Calpena-Campmany AC. Lipid-Based Formulation of Baricitinib for the Topical Treatment of Psoriasis. Pharmaceutics 2024; 16:1287. [PMID: 39458616 PMCID: PMC11510483 DOI: 10.3390/pharmaceutics16101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Baricitinib, commonly used for autoimmune diseases, is typically administered orally, which can lead to systemic adverse effects. A topical formulation could potentially offer localized therapeutic effects while minimizing these side effects. OBJECTIVES This study focuses on developing a lipid-based topical formulation of baricitinib (BCT-OS) for treating psoriasis. METHODS The optimized formulation was then assessed for physical, chemical, and biopharmaceutical characterization. Furthermore, the anti-inflammatory efficacy of the formulation was tested in a model of psoriasis induced by imiquimod in mice, and its tolerance was determined by the evaluation of biomechanical skin properties and an inflammation test model induced by xylol in mice. RESULTS BCT-OS presented appropriate characteristics for skin administration in terms of pH, rheology, extensibility, and stability. The formulation also demonstrated a notable reduction in skin inflammation in the mouse model, and high tolerability without affecting the skin integrity. CONCLUSIONS BCT-OS shows promise as an alternative treatment for psoriasis, offering localized therapeutic benefits with a potentially improved safety profile compared to systemic administration.
Collapse
Affiliation(s)
- Roya Mohammadi-Meyabadi
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Negar Beirampour
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
| | - Núria Garrós
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Lupe Carolina Espinoza
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
- Instituto de Investigaciones en Microbiología (IIM), Universidad Nacional Autónoma de Hondura (UNAH), Tegucigalpa 11101, Honduras
| | - Joaquim Suñer-Carbó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
| | - Ana C. Calpena-Campmany
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Bustos Araya ME, Nardi-Ricart A, Calpena Capmany AC, Miñarro Carmona M. Chondroitin Sulfate for Cartilage Regeneration, Administered Topically Using a Nanostructured Formulation. Int J Mol Sci 2024; 25:10023. [PMID: 39337510 PMCID: PMC11432425 DOI: 10.3390/ijms251810023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
In the pharmaceutical sector, solid lipid nanoparticles (SLN) are vital for drug delivery incorporating a lipid core. Chondroitin sulfate (CHON) is crucial for cartilage health. It is often used in osteoarthritis (OA) treatment. Due to conflicting results from clinical trials on CHON's efficacy in OA treatment, there has been a shift toward exploring effective topical systems utilizing nanotechnology. This study aimed to optimize a solid lipid nanoparticle formulation aiming to enhance CHON permeation for OA therapy. A 3 × 3 × 2 Design of these experiments determined the ideal parameters: a CHON concentration of 0.4 mg/mL, operating at 20,000 rpm speed, and processing for 10 min for SLN production. Transmission electron microscopy analysis confirmed the nanoparticles' spherical morphology, ensuring crucial uniformity for efficient drug delivery. Cell viability assessments showed no significant cytotoxicity within the tested parameters, indicating a safe profile for potential clinical application. The cell internalization assay indicates successful internalization at 1.5 h and 24 h post-treatment. Biopharmaceutical studies supported SLNs, indicating them to be effective CHON carriers through the skin, showcasing improved skin permeation and CHON retention compared to conventional methods. In summary, this study successfully optimized SLN formulation for efficient CHON transport through pig ear skin with no cellular toxicity, highlighting SLNs' potential as promising carriers to enhance CHON delivery in OA treatment and advance nanotechnology-based therapeutic strategies in pharmaceutical formulations.
Collapse
Affiliation(s)
- Marta E Bustos Araya
- Instituto de Investigaciones Farmacéuticas, Facultad de Farmacia, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Anna Nardi-Ricart
- Pharmacy, Pharmaceutical Technology and Physico-Chemical Department, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Ana C Calpena Capmany
- Pharmacy, Pharmaceutical Technology and Physico-Chemical Department, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Montserrat Miñarro Carmona
- Pharmacy, Pharmaceutical Technology and Physico-Chemical Department, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- IDIBELL-UB Research Group, Pharmacotherapy, Pharmacogenomics and Pharmaceutical Technology, Avinguda Granvia, 199-203, 08908 L'Hospitalet de Llobregat, Spain
| |
Collapse
|
6
|
Beirampour N, Bustos-Salgado P, Garrós N, Mohammadi-Meyabadi R, Domènech Ò, Suñer-Carbó J, Rodríguez-Lagunas MJ, Kapravelou G, Montes MJ, Calpena A, Mallandrich M. Formulation of Polymeric Nanoparticles Loading Baricitinib as a Topical Approach in Ocular Application. Pharmaceutics 2024; 16:1092. [PMID: 39204436 PMCID: PMC11360485 DOI: 10.3390/pharmaceutics16081092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Topical ocular drug delivery faces several challenges due to the eye's unique anatomy and physiology. Physiological barriers, tear turnover, and blinking hinder the penetration of drugs through the ocular mucosa. In this context, nanoparticles offer several advantages over traditional eye drops. Notably, they can improve drug solubility and bioavailability, allow for controlled and sustained drug release, and can be designed to specifically target ocular tissues, thus minimizing systemic exposure. This study successfully designed and optimized PLGA and PCL nanoparticles for delivering baricitinib (BTB) to the eye using a factorial design, specifically a three-factor at five-levels central rotatable composite 23+ star design. The nanoparticles were small in size so that they would not cause discomfort when applied to the eye. They exhibited low polydispersity, had a negative surface charge, and showed high entrapment efficiency in most of the optimized formulations. The Challenge Test assessed the microbiological safety of the nanoparticle formulations. An ex vivo permeation study through porcine cornea demonstrated that the nanoparticles enhanced the permeability coefficient of the drug more than 15-fold compared to a plain solution, resulting in drug retention in the tissue and providing a depot effect. Finally, the in vitro ocular tolerance studies showed no signs of irritancy, which was further confirmed by HET-CAM testing.
Collapse
Affiliation(s)
- Negar Beirampour
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
| | - Paola Bustos-Salgado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Núria Garrós
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
| | - Roya Mohammadi-Meyabadi
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Òscar Domènech
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 08028 Barcelona, Spain;
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain;
| | - María Jesús Montes
- Department de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain;
| | - Ana Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
7
|
Iskandar K, Foo J, Liew AQX, Zhu H, Raman D, Hirpara JL, Leong YY, Babak MV, Kirsanova AA, Armand AS, Oury F, Bellot G, Pervaiz S. A novel MTORC2-AKT-ROS axis triggers mitofission and mitophagy-associated execution of colorectal cancer cells upon drug-induced activation of mutant KRAS. Autophagy 2024; 20:1418-1441. [PMID: 38261660 PMCID: PMC11210925 DOI: 10.1080/15548627.2024.2307224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
RAS is one of the most commonly mutated oncogenes associated with multiple cancer hallmarks. Notably, RAS activation induces intracellular reactive oxygen species (ROS) generation, which we previously demonstrated as a trigger for autophagy-associated execution of mutant KRAS-expressing cancer cells. Here we report that drug (merodantoin; C1)-induced activation of mutant KRAS promotes phospho-AKT S473-dependent ROS-mediated S616 phosphorylation and mitochondrial localization of DNM1L/DRP1 (dynamin 1 like) and cleavage of the fusion-associated protein OPA1 (OPA1 mitochondrial dynamin like GTPase). Interestingly, accumulation of the outer mitochondrial membrane protein VDAC1 (voltage dependent anion channel 1) is observed in mutant KRAS-expressing cells upon exposure to C1. Conversely, silencing VDAC1 abolishes C1-induced mitophagy, and gene knockdown of either KRAS, AKT or DNM1L rescues ROS-dependent VDAC1 accumulation and stability, thus suggesting an axis of mutant active KRAS-phospho-AKT S473-ROS-DNM1L-VDAC1 in mitochondrial morphology change and cancer cell execution. Importantly, we identified MTOR (mechanistic target of rapamycin kinsase) complex 2 (MTORC2) as the upstream mediator of AKT phosphorylation at S473 in our model. Pharmacological or genetic inhibition of MTORC2 abrogated C1-induced phosphorylation of AKT S473, ROS generation and mitophagy induction, as well as rescued tumor colony forming ability and migratory capacity. Finally, increase in thermal stability of KRAS, AKT and DNM1L were observed upon exposure to C1 only in mutant KRAS-expressing cells. Taken together, our work has unraveled a novel mechanism of selective targeting of mutant KRAS-expressing cancers via MTORC2-mediated AKT activation and ROS-dependent mitofission, which could have potential therapeutic implications given the relative lack of direct RAS-targeting strategies in cancer.Abbreviations: ACTB/ß-actin: actin beta; AKT: AKT serine/threonine kinase; C1/merodantoin: 1,3-dibutyl-2-thiooxo-imidazoldine-4,5-dione; CAT: catalase; CETSA: cellular thermal shift assay; CHX: cycloheximide; DKO: double knockout; DNM1L/DRP1: dynamin 1 like; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; H2O2: hydrogen peroxide; HSPA1A/HSP70-1: heat shock protein family A (Hsp70) member 1A; HSP90AA1/HSP90: heat shock protein 90 alpha family class A member 1; KRAS: KRAS proto-oncogene, GTPase; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; LC3B-I: unlipidated form of LC3B; LC3B-II: phosphatidylethanolamine-conjugated form of LC3B; MAPKAP1/SIN1: MAPK associated protein 1; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; MFI: mean fluorescence intensity; MiNA: Mitochondrial Network Analysis; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; O2.-: superoxide; OMA1: OMA1 zinc metallopeptidase; OPA1: OPA1 mitochondrial dynamin like GTPase; RICTOR: RPTOR independent companion of MTOR complex 2; ROS: reactive oxygen species; RPTOR/raptor: regulatory associated protein of MTOR complex 1; SOD1: superoxide dismutase 1; SOD2: superoxide dismutase 2; SQSTM1/p62: sequestosome 1; VDAC1: voltage dependent anion channel 1; VDAC2: voltage dependent anion channel 2.
Collapse
Affiliation(s)
- Kartini Iskandar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jonathan Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore
| | - Haiyuxin Zhu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Yan Yi Leong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maria V. Babak
- Drug Discovery Laboratory, Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Anna A. Kirsanova
- Drug Discovery Laboratory, Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Anne-Sophie Armand
- Institut Necker Enfants Malades (INEM), INSERM U1151, Université Paris Cité, Paris, France
| | - Franck Oury
- Institut Necker Enfants Malades (INEM), INSERM U1151, Université Paris Cité, Paris, France
| | - Gregory Bellot
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| |
Collapse
|
8
|
Wang LL, Tuohy S, Xu KL, Nace A, Yang R, Zheng Y, Burdick JA, Cotsarelis G. Local and Sustained Baricitinib Delivery to the Skin through Injectable Hydrogels Containing Reversible Thioimidate Adducts. Adv Healthc Mater 2024; 13:e2303256. [PMID: 38207170 PMCID: PMC11076163 DOI: 10.1002/adhm.202303256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Janus kinase (JAK) inhibitors are approved for many dermatologic disorders, but their use is limited by systemic toxicities including serious cardiovascular events and malignancy. To overcome these limitations, injectable hydrogels are engineered for the local and sustained delivery of baricitinib, a representative JAK inhibitor. Hydrogels are formed via disulfide crosslinking of thiolated hyaluronic acid macromers. Dynamic thioimidate bonds are introduced between the thiolated hyaluronic acid and nitrile-containing baricitinib for drug tethering, which is confirmed with 1H and 13C nuclear magnetic resonance (NMR). Release of baricitinib is tunable over six weeks in vitro and active in inhibiting JAK signaling in a cell line containing a luciferase reporter reflecting interferon signaling. For in vivo activity, baricitinib hydrogels or controls are injected intradermally into an imiquimod-induced mouse model of psoriasis. Imiquimod increases epidermal thickness in mice, which is unaffected when treated with baricitinib or hydrogel alone. Treatment with baricitinib hydrogels suppresses the increased epidermal thickness in mice treated with imiquimod, suggesting that the sustained and local release of baricitinib is important for a therapeutic outcome. This study is the first to utilize a thioimidate chemistry to deliver JAK inhibitors to the skin through injectable hydrogels, which has translational potential for treating inflammatory disorders.
Collapse
Affiliation(s)
- Leo L. Wang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Spencer Tuohy
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania
| | - Karen L. Xu
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania
- BioFrontiers Institute and Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder
| | - Arben Nace
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Ruifeng Yang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Ying Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania
- BioFrontiers Institute and Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
9
|
Ahmed MM, Fatima F, Alnami A, Alsenaidy M, Aodah AH, Aldawsari MF, Almutairy B, Anwer MK, Jafar M. Design and Characterization of Baricitinib Incorporated PLA 3D Printed Pills by Fused Deposition Modeling: An Oral Pill for Treating Alopecia Areata. Polymers (Basel) 2023; 15:polym15081825. [PMID: 37111972 PMCID: PMC10143920 DOI: 10.3390/polym15081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to develop three-dimensional (3D) baricitinib (BAB) pills using polylactic acid (PLA) by fused deposition modeling. Two strengths of BAB (2 and 4% w/v) were dissolved into the (1:1) PEG-400 individually, diluting it with a solvent blend of acetone and ethanol (27.8:18:2) followed by soaking the unprocessed 200 cm~6157.94 mg PLA filament in the solvent blend acetone-ethanol. FTIR spectrums of the 3DP1 and 3DP2 filaments calculated and recognized drug encapsulation in PLA. Herein, 3D-printed pills showed the amorphousness of infused BAB in the filament, as indicated by DSC thermograms. Fabricated pills shaped like doughnuts increased the surface area and drug diffusion. The releases from 3DP1 and 3DP2 were found to be 43.76 ± 3.34% and 59.14 ± 4.54% for 24 h. The improved dissolution in 3DP2 could be due to the higher loading of BAB due to higher concentration. Both pills followed Korsmeyer-Peppas' order of drug release. BAB is a novel JAK inhibitor that U.S. FDA has recently approved to treat alopecia areata (AA). Therefore, the proposed 3D printed tablets can be easily fabricated with FDM technology and effectively used in various acute and chronic conditions as personalized medicine at an economical cost.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Aisha Alnami
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Bjad Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| |
Collapse
|
10
|
Pérez-González N, Espinoza LC, Rincón M, Sosa L, Mallandrich M, Suñer-Carbó J, Bozal-de Febrer N, Calpena AC, Clares-Naveros B. Gel Formulations with an Echinocandin for Cutaneous Candidiasis: The Influence of Azone and Transcutol on Biopharmaceutical Features. Gels 2023; 9:gels9040308. [PMID: 37102920 PMCID: PMC10138157 DOI: 10.3390/gels9040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Caspofungin is a drug that is used for fungal infections that are difficult to treat, including invasive aspergillosis and candidemia, as well as other forms of invasive candidiasis. The aim of this study was to incorporate Azone in a caspofungin gel (CPF-AZ-gel) and compare it with a promoter-free caspofungin gel (CPF-gel). An in vitro release study using a polytetrafluoroethylene membrane and ex vivo permeation into human skin was adopted. The tolerability properties were confirmed by histological analysis, and an evaluation of the biomechanical properties of the skin was undertaken. Antimicrobial efficacy was determined against Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. CPF-AZ-gel and CPF-gel, which had a homogeneous appearance, pseudoplastic behavior, and high spreadability, were obtained. The biopharmaceutical studies confirmed that caspofungin was released following a one-phase exponential association model and the CPF-AZ gel showed a higher release. The CPF-AZ gel showed higher retention of caspofungin in the skin while limiting the diffusion of the drug to the receptor fluid. Both formulations were well-tolerated in the histological sections, as well as after their topical application in the skin. These formulations inhibited the growth of C. glabrata, C. parapsilosis, and C. tropicalis, while C. albicans showed resistance. In summary, dermal treatment with caspofungin could be used as a promising therapy for cutaneous candidiasis in patients that are refractory or intolerant to conventional antifungal agents.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | | | - María Rincón
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona (UB), C. Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Mireia Mallandrich
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
11
|
Aldawsari MF, Alhowail AH, Anwer MK, Ahmed MM. Development of Diphenyl carbonate-Crosslinked Cyclodextrin Based Nanosponges for Oral Delivery of Baricitinib: Formulation, Characterization and Pharmacokinetic Studies. Int J Nanomedicine 2023; 18:2239-2251. [PMID: 37139486 PMCID: PMC10150753 DOI: 10.2147/ijn.s405534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Background The aim of the present investigation is to prepare baricitinib (BAR)-loaded diphenyl carbonate (DPC) β-cyclodextrin (βCD) based nanosponges (NSs) to improve the oral bioavailability. Methods BAR-loaded DPC-crosslinked βCD NSs (B-DCNs) were prepared prepared by varying the molar ratio of βCD: DPC (1:1.5 to 1:6). The developed B-DCNs loaded with BAR were characterized for particle size, polydispersity index (PDI), zeta potential (ZP), % yield and percent entrapment efficiency (%EE). Results Based on the above evaluations, BAR-loaded DPC βCD NSs (B-CDN3) was optimized with mean size (345.8±4.7 nm), PDI (0.335±0.005), Yield (91.46±7.4%) and EE (79.1±1.6%). The optimized NSs (B-CDN3) was further confirmed by SEM, spectral analysis, BET analysis, in vitro release and pharmacokinetic studies. The optimized NSs (B-CDN3) showed 2.13 times enhancement in bioavailability in comparison to pure BAR suspension. Conclusion It could be anticipated that NSs loaded with BAR as a promising tool for release and bioavailability for the treatment of rheumatic arthritis and Covid-19.
Collapse
Affiliation(s)
- Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
- Correspondence: Mohammed F Aldawsari, Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia, Tel +966-555101369, Email
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al-Qassim, 51452, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| |
Collapse
|