1
|
Ristić I, Nikolić L, Cakić S, Nikolić V, Tanasić J, Zvezdanović J, Krstić M. Eco-Friendly Microwave Synthesis of Sodium Alginate-Chitosan Hydrogels for Effective Curcumin Delivery and Controlled Release. Gels 2024; 10:637. [PMID: 39451290 PMCID: PMC11507994 DOI: 10.3390/gels10100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024] Open
Abstract
In this study, we developed sodium alginate-chitosan hydrogels using a microwave-assisted synthesis method, aligning with green chemistry principles for enhanced sustainability. This eco-friendly approach minimizes chemical use and waste while boosting efficiency. A curcumin:2-hydroxypropyl-β-cyclodextrin complex was incorporated into the hydrogels, significantly increasing the solubility and bioavailability of curcumin. Fourier Transform Infrared Spectroscopy (FTIR) analysis confirmed the structure and successful incorporation of curcumin, in both its pure and complexed forms, into the polymer matrix. Differential scanning calorimetry revealed distinct thermal transitions influenced by the hydrogel composition and physical cross-linking. Hydrogels with higher alginate content had higher swelling ratios (338%), while those with more chitosan showed the lowest swelling ratios (254%). Scanning Electron Microscopy (SEM) micrographs showed a porous structure as well as successful incorporation of curcumin or its complex. Curcumin release studies indicated varying releasing rates between its pure and complexed forms. The chitosan-dominant hydrogel exhibited the slowest release rate of pure curcumin, while the alginate-dominant hydrogel exhibited the fastest. Conversely, for curcumin from the inclusion complex, a higher chitosan proportion led to the fastest release rate, while a higher alginate proportion resulted in the slowest. This study demonstrates that the form of curcumin incorporation and gel matrix composition critically influence the release profile. Our findings offer valuable insights for designing effective curcumin delivery systems, representing a significant advancement in biodegradable and sustainable drug delivery technologies.
Collapse
Affiliation(s)
- Ivan Ristić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Ljubiša Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (L.N.); (S.C.); (V.N.); (J.Z.)
| | - Suzana Cakić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (L.N.); (S.C.); (V.N.); (J.Z.)
| | - Vesna Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (L.N.); (S.C.); (V.N.); (J.Z.)
| | - Jelena Tanasić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jelena Zvezdanović
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (L.N.); (S.C.); (V.N.); (J.Z.)
| | - Marija Krstić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| |
Collapse
|
2
|
Chan HW, Zhang X, Chow S, Lam DCL, Chow SF. Inhalable paclitaxel nanoagglomerate dry powders for lung cancer chemotherapy: Design of experiments-guided development, characterization and in vitro evaluation. Int J Pharm 2024; 653:123877. [PMID: 38342326 DOI: 10.1016/j.ijpharm.2024.123877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Conventional intravenous chemotherapy for lung cancer frequently results in inefficient drug penetration into primary lung tumors and severe systemic toxicities. This study reports the development of inhalable paclitaxel (PTX) nanoagglomerate dry powders (PTX-NADP) for enhanced pulmonary delivery of PTX chemotherapy to lung tumors using full factorial Design of Experiments. PTX nanoparticles were fabricated by flash nanoprecipitation with the aid of N-polyvinylpyrrolidone (PVP) and curcumin (CUR) as stabilizer and co-stabilizer respectively, and subsequently agglomerated into inhalable dry powders via co-spray drying with methylcellulose. The optimized PTX-NADP formulation exhibited acceptable aqueous redispersibility (redispersibility index = 1.17 ± 0.02) into ∼ 150 nm nanoparticles and superb in vitro aerosol performance [mass median aerodynamic diameter (MMAD) = 1.69 ± 0.05 µm and fine particle fraction (FPF) of 70.89 ± 1.72 %] when dispersed from a Breezhaler® at 90 L/min. Notably, adequate aerosolization (MMAD < 3.5 µm and FPF > 40 %) of the optimized formulation was maintained when dispersed at reduced inspiratory flow rates of 30 - 60 L/min. Redispersed PTX nanoparticles from PTX-NADP demonstrated enhanced in vitro antitumor efficacy and cellular uptake in A549 lung adenocarcinoma cells without compromising tolerability of BEAS-2B normal lung epithelial cells towards PTX chemotherapy. These findings highlight the potential of inhaled PTX-NADP therapy to improve therapeutic outcomes for lung cancer patients with varying levels of pulmonary function impairment.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - David Chi Leung Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong, China.
| |
Collapse
|
3
|
Li Z, Luo X, Li Q, Jin Z, Naeem A, Zhu W, Chen L, Feng Y, Ming L. The Fabrication, Drug Loading, and Release Behavior of Porous Mannitol. Molecules 2024; 29:715. [PMID: 38338458 PMCID: PMC10856056 DOI: 10.3390/molecules29030715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Porous materials are widely used as an effective strategy for the solubilization of insoluble drugs. In order to improve the solubility and bioavailability of low water-solubility drugs, it is necessary to prepare porous materials. Mannitol is one of the most popular excipients in food and drug formulations. In this study, porous mannitol was investigated as a drug carrier for low water solubility drugs. Its fabrication, drug loading, and drug release mechanisms were investigated. Porous mannitol was fabricated using the co-spray-antisolvent process and utilizing polyvinylpyrrolidone K30 (PVP K30) as the template agent. Porous mannitol particles were prepared by changing the proportion of the template agent, spraying the particles with mannitol, and eluting with ethanol in order to regulate their pore structure. In subsequent studies, porous mannitol morphology and characteristics were determined systematically. Furthermore, curcumin and ibuprofen, two poorly water-soluble drugs, were loaded into porous mannitol, and their release profiles were analyzed. The results of the study indicated that porous mannitol can be prepared using PVP K30 as a template and that the amount of template agent can be adjusted in order to control the structure of the porous mannitol. When the template agent was added in amounts of 1%, 3%, and 5%, the mannitol pore size increased by 167.80%, 95.16%, and 163.98%, respectively, compared to raw mannitol. Molecular docking revealed that mannitol and drugs are adsorbents and adhere to each other by force interaction. The cumulative dissolution of curcumin and ibuprofen-loaded porous mannitol reached 69% and 70%, respectively. The release mechanism of curcumin and ibuprofen from drug-loaded mannitol was suitable for the Korsmeyer-Peppas kinetic model. In summary, the co-spray-antisolvent method proved effective in fabricating porous materials rapidly, and porous mannitol had a remarkable effect on drug solubilization. The results obtained are conducive to the development of porous materials.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Xiaosui Luo
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Qiong Li
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Zhengji Jin
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Yi Feng
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liangshan Ming
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| |
Collapse
|
4
|
Mugundhan SL, Balasubramaniyan P, Narayanasamy D, Mohan M. Curcumin- β-Cyclodextrin Molecular Inclusion Complex: A Water-Soluble Complex in Fast-dissolving Tablets for the Treatment ofNeurodegenerative Disorders. Pharm Nanotechnol 2024; 12:365-377. [PMID: 38192139 DOI: 10.2174/0122117385273171231120051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Orally disintegrating tablets (ODTs) have become an excellent choice for delivering drugs as their palatability is greatly improved. In this work, β-cyclodextrin has been used to improve the solubility of curcumin by encapsulating it into the hydrophobic cavity for the treatment of neurodegenerative disorders. OBJECTIVES The current study aimed to present the design, formulation, and optimisation of fastdissolving oral tablets of curcumin- β-cyclodextrin molecular inclusion complex using a 32-factorial design. METHODS The drug-excipient compatibility was studied by FTIR spectroscopy. The inclusion complex of curcumin-β-cyclodextrin was prepared using solvent casting and confirmed using XRD studies. Powder blends were evaluated for flow properties. Tablets prepared by direct compression were evaluated for post-compression parameters. Further, the effect of formulation variables, such as sodium starch glycolate (X1) and Neusilin® ULF2 (X2), on various responses, including disintegration time and dissolution at 2 hours, was studied using statistical models. RESULTS Post-compression parameters, i.e., hardness (4.4-5 kg/cm2), thickness (3.82-3.93 mm), weight variation (±7.5%), friability (< 1%), wetting time (51-85 seconds) and drug content (96.28- 99.32%) were all found to be within the permissible limits and the disintegration time of tablets with super-disintegrants ranged between 45-58 seconds. The in-vitro dissolution profile of tablets showed that higher SSG and Neuslin® ULF2 levels promoted drug release. For statistical analysis, the 2FI model was chosen. Optimised variables for formulation have been determined and validated with the experimental findings based on the significant desirability factor. CONCLUSION The current study reveals the validated curcumin-β-cyclodextrin inclusion complex fastdissolving tablets with SSG and Neusilin® ULF2 to be an ideal choice for effectively treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
5
|
Babić Radić MM, Filipović VV, Vuković JS, Vukomanović M, Ilic-Tomic T, Nikodinovic-Runic J, Tomić SL. 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform. Polymers (Basel) 2023; 15:polym15071643. [PMID: 37050256 PMCID: PMC10097359 DOI: 10.3390/polym15071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The idea of this study was to create a new scaffolding system based on 2-hydroxyethyl methacrylate, gelatin, and alginate that contains titanium(IV) oxide nanoparticles as a platform for the controlled release of the bioactive agent curcumin. The innovative strategy to develop hybrid scaffolds was the modified porogenation method. The effect of the scaffold composition on the chemical, morphology, porosity, mechanical, hydrophilicity, swelling, degradation, biocompatibility, loading, and release features of hybrid scaffolds was evaluated. A porous structure with interconnected pores in the range of 52.33–65.76%, favorable swelling capacity, fully hydrophilic surfaces, degradability to 45% for 6 months, curcumin loading efficiency above 96%, and favorable controlled release profiles were obtained. By applying four kinetic models of release, valuable parameters were obtained for the curcumin/PHEMA/gelatin/alginate/TiO2 release platform. Cytotoxicity test results depend on the composition of the scaffolds and showed satisfactory cell growth with visible cell accumulation on the hybrid surfaces. The constructed hybrid scaffolds have suitable high-performance properties, suggesting potential for further in vivo and clinical studies.
Collapse
|
6
|
Platon IV, Ghiorghita CA, Lazar MM, Raschip IE, Dinu MV. Chitosan Sponges with Instantaneous Shape Recovery and Multistrain Antibacterial Activity for Controlled Release of Plant-Derived Polyphenols. Int J Mol Sci 2023; 24:4452. [PMID: 36901883 PMCID: PMC10002852 DOI: 10.3390/ijms24054452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Biomass-derived materials with multiple features are seldom reported so far. Herein, new chitosan (CS) sponges with complementary functions for point-of-use healthcare applications were prepared by glutaraldehyde (GA) cross-linking and tested for antibacterial activity, antioxidant properties, and controlled delivery of plant-derived polyphenols. Their structural, morphological, and mechanical properties were thoroughly assessed by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and uniaxial compression measurements, respectively. The main features of sponges were modulated by varying the CS concentration, cross-linking ratio, and gelation conditions (either cryogelation or room-temperature gelation). They exhibited complete water-triggered shape recovery after compression, remarkable antibacterial properties against Gram-positive (Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes)) and Gram-negative (Escherichia coli (E. coli), Salmonella typhimurium (S. typhimurium)) strains, as well as good radical scavenging activity. The release profile of a plant-derived polyphenol, namely curcumin (CCM), was investigated at 37 °C in simulated gastrointestinal media. It was found that CCM release was dependent on the composition and the preparation strategy of sponges. By linearly fitting the CCM kinetic release data from the CS sponges with the Korsmeyer-Peppas kinetic models, a pseudo-Fickian diffusion release mechanism was predicted.
Collapse
Affiliation(s)
| | | | | | | | - Maria Valentina Dinu
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|