1
|
Wenck C, Meier N, Heinrich E, Grützner V, Wiekhorst F, Bleul R. Design and characterisation of casein coated and drug loaded magnetic nanoparticles for theranostic applications. RSC Adv 2024; 14:26388-26399. [PMID: 39165790 PMCID: PMC11334153 DOI: 10.1039/d4ra02626h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Theranostic systems enable early cancer diagnostic and treatment. In this work, we prepared Na-caseinate coated magnetic nanoparticles (MNP) to assess their capability as a theranostic system. This system enables monitoring by magnetic particle imaging (MPI), drug delivery and magnetic hyperthermia. MNP were synthesized in a continuous flow, coated with Na-caseinate and enzymatically crosslinked with transglutaminase to increase their colloidal stability and enable drug loading. They were investigated concerning their magnetic behaviour by DC magnetization measurements (DCM), magnetic particle spectroscopy (MPS) and AC-magnetometry to evaluate their suitability for MPI and hyperthermia. Further, their stability in different salt solutions as well as their encapsulation efficiency with a hydrophobic model drug (nile red), cell viability and uptake were investigated. Our results show that the Na-caseinate coating of MNP marginally effects the magnetic behaviour of the MNP with a consistent magnetization saturation M S of 109(5) A m2 per kg(Fe) for uncoated and casein coated MNP and with a decrease of <15% of A 3*, but only a slight decrease of 2% of A 5/A 3 for Na-caseinate coated MNP. Furthermore, the Na-caseinate coating of MNP increased their salt stability, under unchanged magnetic behaviour. Drug loading (up to ∼75%) and release kinetics such as the delivery into cutaneous squamous cell carcinoma cells (SCL-1) was shown. Our results demonstrate that casein coated MNP are highly promising candidates for theranostic applications in drug delivery, magnetic hyperthermia and magnetic particle imaging.
Collapse
Affiliation(s)
- Christina Wenck
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Nils Meier
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Eilien Heinrich
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Verena Grützner
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Frank Wiekhorst
- Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt Abbestr. 2-12 10587 Berlin Germany
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| |
Collapse
|
2
|
Alsakhawy SA, Baghdadi HH, El-Shenawy MA, El-Hosseiny LS. Enhancement of lemongrass essential oil physicochemical properties and antibacterial activity by encapsulation in zein-caseinate nanocomposite. Sci Rep 2024; 14:17278. [PMID: 39068244 PMCID: PMC11283490 DOI: 10.1038/s41598-024-67273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Essential oils (EOs) represent a pivotal source for developing potent antimicrobial drugs. However, EOs have seldom found their way to the pharmaceutical market due to their instability and low bioavailability. Nanoencapsulation is an auspicious strategy that may circumvent these limitations. In the current study, lemongrass essential oil (LGO) was encapsulated in zein-sodium caseinate nanoparticles (Z-NaCAS NPs). The fabricated nanocomposite was characterized using dynamic light scattering, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and transmission electron microscopy. The antimicrobial activity of LGO loaded NPs was assessed in comparison to free LGO against Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumoniae. Furthermore, their antibacterial mechanism was examined by alkaline phosphatase, lactate dehydrogenase, bacterial DNA and protein assays, and scanning electron microscopy. Results confirmed the successful encapsulation of LGO with particle size of 243 nm, zeta potential of - 32 mV, and encapsulation efficiency of 84.7%. Additionally, the encapsulated LGO showed an enhanced thermal stability and a sustained release pattern. Furthermore, LGO loaded NPs exhibited substantial antibacterial activity, with a significant 2 to 4 fold increase in cell wall permeability and intracellular enzymes leakage versus free LGO. Accordingly, nanoencapsulation in Z-NaCAS NPs improved LGO physicochemical and antimicrobial properties, expanding their scope of pharmaceutical applications.
Collapse
Affiliation(s)
- Sara A Alsakhawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Moustafa A El-Shenawy
- Department of Food Microbiology, National Research Center, Dokki, Cairo, 12311, Egypt
| | - Lobna S El-Hosseiny
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
3
|
Zahariev N, Pilicheva B. A Novel Method for the Preparation of Casein-Fucoidan Composite Nanostructures. Polymers (Basel) 2024; 16:1818. [PMID: 39000673 PMCID: PMC11244046 DOI: 10.3390/polym16131818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
The aim of the study was to develop casein-fucoidan composite nanostructures through the method of polyelectrolyte complexation and subsequent spray drying. To determine the optimal parameters for the preparation of the composite structures and to investigate the influence of the production and technological parameters on the main structural and morphological characteristics of the obtained structures, 3(k-p) fractional factorial design was applied. The independent variables (casein to fucoidan ratio, glutaraldehyde concentration, and spray intensity) were varied at three levels (low, medium, and high) and their effect on the yield, the average particle size, and the zeta potential were evaluated statistically. Based on the obtained results, models C1F1G1Sp.30, C1F1G2Sp.40, and C1F1G3Sp.50, which have an average particle size ranging from (0.265 ± 0.03) µm to (0.357 ± 0.02) µm, a production yield in the range (48.9 ± 2.9) % to (66.4 ± 2.2) %, and a zeta potential varying from (-20.12 ± 0.9) mV to (-25.71 ± 1.0) mV, were selected as optimal for further use as drug delivery systems.
Collapse
Affiliation(s)
- Nikolay Zahariev
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Rathna RP, Kulandhaivel M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch Microbiol 2024; 206:199. [PMID: 38563993 DOI: 10.1007/s00203-024-03910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.
Collapse
Affiliation(s)
- R Preethi Rathna
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India
| | - M Kulandhaivel
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India.
| |
Collapse
|
5
|
Kolahreez D, Ghasemi-Mobarakeh L, Quartinello F, Liebner FW, Guebitz GM, Ribitsch D. Multifunctional Casein-Based Wound Dressing Capable of Monitoring and Moderating the Proteolytic Activity of Chronic Wounds. Biomacromolecules 2024; 25:700-714. [PMID: 38295273 PMCID: PMC10865360 DOI: 10.1021/acs.biomac.3c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Every 1.2 s, a diabetic foot ulcer is developed, and every 20 s, one amputation is carried out in diabetic patients. Monitoring and controlling protease activity have been considered as a strategy for more efficient management of diabetic and other chronic wounds. This study aimed to develop a casein-based dressing that, by its disappearance, provides information about the activity of proteases and simultaneously harnesses proteolytic activity. Casein films were fabricated by using an aqueous solution, and heat treatment was successfully deployed as a green and clean approach to confer hydrolytic stability. Our results showed that casein-based films' mechanical characteristics, water absorption, and proteolytic stability could be controlled by the length of the heat treatment, which proved to be a useful tool. An increase in the treatment duration from 30 min to 3 h led to toleration of 2.4 times higher stress, 2 times lower water uptake, and 3.4 times higher proteolytic stability at examined conditions. Selected casein-based structures responded to Bacillus sp. bacteria's protease (BSP) and human neutrophil elastase (HNE) as representatives of bacterial and nonbacterial proteases found in the wounds at 10 and 200 ng mL-1 levels, respectively. The hydrolysis was accompanied by a 36% reduction in proteolytic activity measured by using a casein-based universal protease activity assay. The released casein fragments could scavenge 90% of the examined radicals. In-vitro cell culture studies showed that the hydrolysates were not cytotoxic, and the casein-based film had a favorable interaction with fibroblast cells, indicating its potential as a scaffold in the case that proteolytic activity would not be to the extent that causes its rapid disintegration. In general, these findings hold promise for applying the developed casein-based structure for detecting proteolytic activity without the need for any equipment, kits, or expertise and, more importantly, in a highly economical manner. In the case that the proteolytic activity would not be severe, it could also serve as a substrate for cell adhesion and growth; this would aid in the healing process.
Collapse
Affiliation(s)
- Davood Kolahreez
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Laleh Ghasemi-Mobarakeh
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Felice Quartinello
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Falk W. Liebner
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Georg M. Guebitz
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Doris Ribitsch
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| |
Collapse
|