1
|
Hu Y, Lan T, Li J, Li L, Song J. Glycyrrhetinic acid-modified redox-sensitive polymeric mixed micelles for tumor-specific intracellular delivery of cantharidin. RSC Adv 2024; 14:28753-28767. [PMID: 39257662 PMCID: PMC11386168 DOI: 10.1039/d4ra03171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Cantharidin (CTD) has been widely used to treat hepatocellular carcinoma (HCC) in clinical practice. However, the current CTD preparations may induce hepatic and renal damage due to their non-specific distribution. Therefore, redox-sensitive polymer Pluronic F127-disulfide bond-poly(d,l-lactide) (F127-SS-PDLA) and active targeting polymer F127-glycyrrhetinic acid (F127-GA) were synthesized to prepare mixed micelles (GA/F127-SS-PDLA/CTD) for effective delivery of CTD. Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy were used to verify the successful synthesis of F127-SS-PDLA and F127-GA. During the preparation, this study was the first to screen the density of GA by cellular uptake assay. The results indicated that mixed micelles with 10% and 15% F127-GA (weight fraction) exhibited superior cellular uptake in comparison to micelles with 5% and 20% F127-GA. GA/F127-SS-PDLA/CTD micelles prepared by thin film hydration method demonstrated excellent drug loading capacity for CTD (16.12 ± 0.11%). The particle size and zeta potential of GA/F127-SS-PDLA/CTD micelles were 85.17 ± 1.24 nm and -11.71 ± 0.86 mV, respectively. Hemolysis and stability assay showed that the mixed micelles had good blood compatibility and could remain stable for 30 days at 4 °C. The redox-sensitivity of GA/F127-SS-PDLA/CTD micelles in vitro was verified under reducing conditions through dynamic light scattering (DLS) and an in vitro drug release experiment, which showed obvious particle size variation and rapid drug release ability. In cellular experiments, GA/F127-SS-PDLA/CTD micelles could induce superior cytotoxicity, apoptosis and intracellular reactive oxygen species (ROS) levels compared with free CTD, non-sensitive F127-PDLA/CTD micelles and redox-sensitive F127-SS-PDLA/CTD micelles. The cellular uptake ability of nile red-labeled GA/F127-SS-PDLA micelles, which was evaluated via fluorescent microscope and flow cytometry, indicated that the modification of GA significantly increased micelle uptake in HepG-2 cells. Consequently, GA/F127-SS-PDLA/CTD micelles could be considered as a satisfactory drug administration strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Yu Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| | - Tian Lan
- Innovative Institute of Chinese Medicine, Shandong University of TCM 250355 Jinan Shandong China
| | - Ji Li
- Affiliated Hospital of Shandong University of TCM 250011 Jinan Shandong China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| | - Jizheng Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| |
Collapse
|
2
|
Zlotnikov ID, Ezhov AA, Belogurova NG, Kudryashova EV. pH-Sensitive Fluorescent Probe in Nanogel Particles as Theragnostic Agent for Imaging and Elimination of Latent Bacterial Cells Residing Inside Macrophages. Gels 2024; 10:567. [PMID: 39330169 PMCID: PMC11431188 DOI: 10.3390/gels10090567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Rhodamine 6G (R6G) and 4-nitro-2,1,3-benzoxadiazole (NBD) linked through a spacer molecule spermidine (spd), R6G-spd-NBD, produces a fluorescent probe with pH-sensitive FRET (Förster (fluorescence) resonance energy transfer) effect that can be useful in a variety of diagnostic applications. Specifically, cancer cells can be spotted due to a local decrease in pH (Warburg effect). In this research, we applied this approach to intracellular infectious diseases-namely, leishmaniasis, brucellosis, and tuberculosis, difficult to treat because of their localization inside macrophages. R6G-spd-NBD offers an opportunity to detect such bacteria and potentially deliver therapeutic targets to treat them. The nanogel formulation of the R6G-spd-NBD probe (nanoparticles based on chitosan or heparin grafted with lipoic acid residues, Chit-LA and Hep-LA) was obtained to improve the pH sensitivity in the desired pH range (5.5-7.5), providing selective visualization and targeting of bacterial cells, thereby enhancing the capabilities of CLSM (confocal laser scanning microscopy) imaging. According to AFM (atomic force microscopy) data, nanogel particles containing R6G-spd-NBD of compact structure and spherical shape are formed, with a diameter of 70-100 nm. The nanogel formulation of the R6G-spd-NBD further improves absorption and penetration into bacteria, including those located inside macrophages. Due to the negative charge of the bacteria surface, the absorption of positively charged R6G-spd-NBD, and even more so in the chitosan derivatives' nanogel particles, is pronounced. Additionally, with a pH-sensitive R6G-spd-NBD fluorescent probe, the macrophages' lysosomes can be easily distinguished due to their acidic pH environment. CLSM was used to visualize samples of macrophage cells containing absorbed bacteria. The created nanoparticles showed a significant selectivity to model E. coli vs. Lactobacillus bacterial cells, and the R6G-spd-NBD agent, being a mild bactericide, cleared over 50% E.coli in conditions where Lactobacillus remained almost unaffected. Taken together, our data indicate that R6G-spd-NBD, as well as similar compounds, can have value not only for diagnostic, but also for theranostic applications.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia;
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| |
Collapse
|
3
|
Zlotnikov ID, Ezhov AA, Kudryashova EV. pH-Sensitive Fluorescent Marker Based on Rhodamine 6G Conjugate with Its FRET/PeT Pair in "Smart" Polymeric Micelles for Selective Imaging of Cancer Cells. Pharmaceutics 2024; 16:1007. [PMID: 39204352 PMCID: PMC11360677 DOI: 10.3390/pharmaceutics16081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer cells are known to create an acidic microenvironment (the Warburg effect). At the same time, fluorescent dyes can be sensitive to pH, showing a sharp increase or decrease in fluorescence depending on pH. However, modern applications, such as confocal laser scanning microscopy (CLSM), set additional requirements for such fluorescent markers to be of practical use, namely, high quantum yield, low bleaching, minimal quenching in the cell environment, and minimal overlap with auto-fluorophores. R6G could be the perfect match for these requirements, but its fluorescence is not pH-dependent. We have attempted to develop an R6G conjugate with its FRET or PeT pair that would grant it pH sensitivity in the desired range (5.5-7.5) and enable the selective targeting of tumor cells, thus improving CLSM imaging. Covalent conjugation of R6G with NBD using a spermidine (spd) linker produced a pH-sensitive FRET effect but within the pH range of 7.0-9.0. Shifting this effect to the target pH range of 5.5-7.5 appeared possible by incorporating the R6G-spd-NBD conjugate within a "smart" polymeric micelle based on chitosan grafted with lipoic acid. In our previous studies, one could conclude that the polycationic properties of chitosan could make this pH shift possible. As a result, the micellar form of the NBD-spd-R6G fluorophore demonstrates a sharp ignition of fluorescence by 40%per1 pH unit in the pH range from 7.5 to 5. Additionally, "smart" polymeric micelles based on chitosan allow the label to selectively target tumor cells. Due to the pH sensitivity of the fluorophore NBD-spd-R6G and the selective targeting of cancer cells, the efficient visualization of A875 and K562 cells was achieved. CLSM imaging showed that the dye actively penetrates cancer cells (A875 and K562), while minimal accumulation and low fluorophore emission are observed in normal cells (HEK293T). It is noteworthy that by using "smart" polymeric micelles based on polyelectrolytes of different charges and structures, we create the possibility of regulating the pH dependence of the fluorescence in the desired interval, which means that these "smart" polymeric micelles can be applied to the visualization of a variety of cell types, organelles, and other structures.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia;
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
4
|
Liu L, Zhao X. Preparation of environmentally responsive PDA&DOX@LAC live drug carrier for synergistic tumor therapy. Sci Rep 2024; 14:15927. [PMID: 38987493 PMCID: PMC11236969 DOI: 10.1038/s41598-024-66966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The development of intelligent, environmentally responsive and biocompatible photothermal system holds significant importance for the photothermal combined therapy of tumors. In this study, inspired by Lactobacillus (LAC), we prepared a biomimetic nanoplatform PDA&DOX@LAC for tumor photothermal-chemotherapy by integrating the chemotherapeutic drug doxorubicin (DOX) with dopamine through oxidative polymerization to form polydopamine (PDA) on the surface of LAC. The PDA&DOX@LAC nanoplatform not only achieves precise and controlled release of DOX based on the slightly acidic microenvironment of tumor tissues, but also exhibits enzyme-like properties to alleviate tumor hypoxia. Under near-infrared light irradiation, it effectively induces photothermal ablation of tumor cells, enhances cellular uptake of DOX with increasing temperature, and thus efficiently inhibits tumor cell growth. Moreover, it is further confirmed in vivo experiments that photothermal therapy combined with PDA&DOX@LAC induces tumor cells apoptosis, releases tumor-associated antigens, which is engulfed by dendritic cells to activate cytotoxic T lymphocytes, thereby effectively suppressing tumor growth and prolonging the survival period of 4T1 tumor-bearing mice. Therefore, the PDA&DOX@LAC nanoplatform holds immense potential in precise tumor targeting as well as photothermal combined therapy and provides valuable insights and theoretical foundations for the development of novel tumor treatment strategies based on endogenous substances within the body.
Collapse
Affiliation(s)
- Lu Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an, 223002, People's Republic of China
| | - Xuefen Zhao
- Northern Jiangsu People's Hospital, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
5
|
Sipos B, Katona G, Csóka I. Risperidone-Loaded Nasal Thermosensitive Polymeric Micelles: Quality by Design-Based Formulation Study. Pharmaceutics 2024; 16:703. [PMID: 38931827 PMCID: PMC11206254 DOI: 10.3390/pharmaceutics16060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The current research aims to develop thermosensitive polymeric micelles loaded with risperidone for nasal administration, emphasizing the added benefits of their thermosensitive behavior under nasal conditions. An initial risk assessment facilitated the advanced development process, confirming that the key indicators of thermosensitivity were suitable for nasal application. The polymeric micelles exhibited an average size of 118.4 ± 3.1 nm at ambient temperature and a size of 20.47 ± 1.2 nm at 36.5 °C, in both cases in monodisperse distribution. Factors such as pH and viscosity did not significantly impact these parameters, demonstrating appropriate nasal applicability. The model formulations showed a rapid, burst-like drug release profile in vitro, accompanied by a quick and high permeation rate at nasal conditions. Overall, the Quality by Design-based risk assessment process led to the development of an advanced drug delivery system capable of administering risperidone through the nasal cavity.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (G.K.); (I.C.)
| | | | | |
Collapse
|
6
|
Zlotnikov ID, Ezhov AA, Dobryakova NV, Kudryashova EV. Disulfide Cross-Linked Polymeric Redox-Responsive Nanocarrier Based on Heparin, Chitosan and Lipoic Acid Improved Drug Accumulation, Increased Cytotoxicity and Selectivity to Leukemia Cells by Tumor Targeting via "Aikido" Principle. Gels 2024; 10:157. [PMID: 38534575 DOI: 10.3390/gels10030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
We have developed a micellar formulation of anticancer drugs based on chitosan and heparin grafted with lipoic and oleic acids that can release the cytotoxic cargo (doxorubicin) in response to external stimuli, such as increased glutathione concentration-a hallmark of cancer. Natural polysaccharides (heparin and chitosan) provide the pH sensitivity of the nanocarrier: the release of doxorubicin (Dox) is enhanced in a slightly acidic environment (tumor microenvironment). Fatty acid residues are necessary for the formation of nanoparticles (micelles) and solubilization of cytostatics in a hydrophobic core. Lipoic acid residues provide the formation of a labile S-S cross-linking between polymer chains (the first variant) or covalently attached doxorubicin molecules through glutathione-sensitive S-S bridges (the second variant)-both determine Redox sensitivity of the anticancer drugs carriers stable in blood circulation and disintegrate after intracellular uptake in the tumor cells. The release of doxorubicin from micelles occurs slowly (20%/6 h) in an environment with a pH of 7.4 and the absence of glutathione, while in a slightly acidic environment and in the presence of 10 mM glutathione, the rate increases up to 6 times, with an increase in the effective concentration up to 5 times after 7 h. The permeability of doxorubicin in micellar formulations (covalent S-S cross-linked and not) into Raji, K562, and A875 cancer cells was studied using FTIR, fluorescence spectroscopy and confocal laser scanning microscopy (CLSM). We have shown dramatically improved accumulation, decreased efflux, and increased cytotoxicity compared to doxorubicin control with three tumor cell lines: Raji, K562, and A875. At the same time, cytotoxicity and permeability for non-tumor cells (HEK293T) are significantly lower, increasing the selectivity index against tumor cells by several times.
Collapse
Affiliation(s)
- Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Alexander A Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Natalia V Dobryakova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| |
Collapse
|
7
|
Zlotnikov ID, Krylov SS, Semenova MN, Semenov VV, Kudryashova EV. Triphenylphosphine Derivatives of Allylbenzenes Express Antitumor and Adjuvant Activity When Solubilized with Cyclodextrin-Based Formulations. Pharmaceuticals (Basel) 2023; 16:1651. [PMID: 38139778 PMCID: PMC10747112 DOI: 10.3390/ph16121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine (PPh3) derivatives of allylbenzenes are two to three orders of magnitude more potent than original allylbenzenes in terms of IC50. The inhibition of efflux pumps has been reported for allylbenzenes, and the PPh3 moiety is deemed to be responsible for preferential mitochondrial accumulation and the depolarization of mitochondrial membranes. However, due to poor solubility, the practical use of these substances has never been an option. Here, we show that this problem can be solved by using a complex formation with cyclodextrin (CD-based molecular containers) and polyanionic heparin, stabilizing the positive charge of the PPh3 cation. Such containers can solubilize both allylbenzenes and their PPh3 derivatives up to 0.4 mM concentration. Furthermore, we have observed that solubilized PPh3 derivatives indeed work as adjuvants, increasing the antitumor activity of paclitaxel against adenocarcinomic human alveolar basal epithelial cells (A549) by an order of magnitude (in terms of IC50) in addition to being quite powerful cytostatics themselves (IC50 in the range 1-10 µM). Even more importantly, CD-solubilized PPh3 derivatives show pronounced selectivity, being highly toxic for the A549 tumor cell line and minimally toxic for HEK293T non-tumor cells, red blood cells and sea urchin embryos. Indeed, in many cancers, the mitochondrial membrane is more prone to depolarization compared to normal cells, which probably explains the observed selectivity of our compounds, since PPh3 derivatives are known to act as mitochondria-targeting agents. According to the MTT test, 100 µM solution of PPh3 derivatives of allylbenzenes causes the death of up to 85% of A549 cancer cells, while for HEK293T non-cancer cells, only 15-20% of the cells died. The hemolytic index of the studied substances did not exceed 1%, and the thrombogenicity index was < 1.5%. Thus, this study outlines the experimental foundation for developing combined cytostatic medications, where effectiveness and selectivity are achieved through decreased concentration of the primary ingredient and the inclusion of adjuvants, which are safe or practically harmless substances.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Sergey S. Krylov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Marina N. Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
8
|
Savchenko IV, Zlotnikov ID, Kudryashova EV. Biomimetic Systems Involving Macrophages and Their Potential for Targeted Drug Delivery. Biomimetics (Basel) 2023; 8:543. [PMID: 37999184 PMCID: PMC10669405 DOI: 10.3390/biomimetics8070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The concept of targeted drug delivery can be described in terms of the drug systems' ability to mimic the biological objects' property to localize to target cells or tissues. For example, drug delivery systems based on red blood cells or mimicking some of their useful features, such as long circulation in stealth mode, have been known for decades. On the contrary, therapeutic strategies based on macrophages have gained very limited attention until recently. Here, we review two biomimetic strategies associated with macrophages that can be used to develop new therapeutic modalities: first, the mimicry of certain types of macrophages (i.e., the use of macrophages, including tumor-associated or macrophage-derived particles as a carrier for the targeted delivery of therapeutic agents); second, the mimicry of ligands, naturally absorbed by macrophages (i.e., the use of therapeutic agents specifically targeted at macrophages). We discuss the potential applications of biomimetic systems involving macrophages for new advancements in the treatment of infections, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia (I.D.Z.)
| |
Collapse
|
9
|
Zlotnikov ID, Kudryashova EV. Biomimetic System Based on Reconstituted Macrophage Membranes for Analyzing and Selection of Higher-Affinity Ligands Specific to Mannose Receptor to Develop the Macrophage-Focused Medicines. Biomedicines 2023; 11:2769. [PMID: 37893142 PMCID: PMC10603928 DOI: 10.3390/biomedicines11102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Progress in macrophage research is crucial for numerous applications in medicine, including cancer and infectious diseases. However, the existing methods to manipulate living macrophages are labor-intense and inconvenient. Here, we show that macrophage membranes can be reconstituted after storage for months at 4 °C, with their CD206 receptor selectivity and specificity being similar to those in the living cells. Then, we have developed a mannose ligand, specific to CD206, linked with PEG as an IR spectroscopy marker to detect binding with the macrophage receptor. PEG was selected due to its unique adsorption band of the C-O-C group at IR spectra, which does not overlap with other biomolecules' spectroscopic feature. Next, competitive binding assay versus the PEG-bound ligand has enabled the selection of other higher-affinity ligands specific to CD206. Furthermore, those higher-affinity ligands were used to differentiate activated macrophages in a patient's bronchoalveolar (BAL) or nasopharyngeal (NPL) lavage. CD206- control cells (HEK293T) showed only non-specific binding. Therefore, biochips based on reconstituted macrophage membranes as well as PEG-trimannoside as an IR spectroscopic marker can be used to develop new methods facilitating macrophage research and macrophage-focused drug discovery.
Collapse
Affiliation(s)
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| |
Collapse
|
10
|
Zlotnikov ID, Belogurova NG, Poddubnaya IV, Kudryashova EV. Mucosal Adhesive Chitosan Nanogel Formulations of Antibiotics and Adjuvants (Terpenoids, Flavonoids, etc.) and Their Potential for the Treatment of Infectious Diseases of the Gastrointestinal Tract. Pharmaceutics 2023; 15:2353. [PMID: 37765322 PMCID: PMC10535539 DOI: 10.3390/pharmaceutics15092353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial infections are usually found in the stomach and the first part of the small intestine in association with various pathologies, including ulcers, inflammatory diseases, and sometimes cancer. Treatment options may include combinations of antibiotics with proton pump inhibitors and anti-inflammatory drugs. However, all of them have high systemic exposure and, hence, unfavorable side effects, whereas their exposure in stomach mucus, the predominant location of the bacteria, is limited. Chitosan and nanogels based on chitosan presumably are not absorbed from the gastrointestinal tract and are known to adhere to the mucus. Therefore, they can serve as a basis for the local delivery of antibacterial drugs, increasing their exposure at the predominant location of therapeutic targets, thus improving the risk/benefit ratio. We have used E. coli ATCC 25922 (as a screening model of pathogenic bacteria) and Lactobacilli (as a model of a normal microbiome) to study the antibacterial activity of antibacterial drugs entrapped in a chitosan nanogel. Classical antibiotics were studied in a monotherapeutic regimen as well as in combination with individual terpenoids and flavonoids as adjuvants. It has been shown that levofloxacin (LF) in combination with zephirol demonstrate synergistic effects against E. coli (cell viability decreased by about 50%) and, surprisingly, a much weaker effect against Lactobacilli. A number of other combinations of antibiotic + adjuvant were also shown to be effective. Using FTIR and UV spectroscopy, it has been confirmed that chitosan nanogels with the drug are well adsorbed on the mucosal model, providing prolonged release at the target location. Using an ABTS assay, the antioxidant properties of flavonoids and other drugs are shown, which are potentially necessary to minimize the harmful effects of toxins and radicals produced by pathogens. In vivo experiments (on sturgeon fish) showed the effective action of antibacterial formulations developed based on LF in chitosan nanogels for up to 11 days. Thus, chitosan nanogels loaded with a combination of drugs and adjuvants can be considered as a new strategy for the treatment of infectious diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Irina V. Poddubnaya
- Research Laboratory of Aquatic Environment Protection and Ichthyopathology, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410005 Saratov, Russia;
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
11
|
Zlotnikov ID, Davydova MP, Danilov MR, Krylov SS, Belogurova NG, Kudryashova EV. Covalent Conjugates of Allylbenzenes and Terpenoids as Antibiotics Enhancers with the Function of Prolonged Action. Pharmaceuticals (Basel) 2023; 16:1102. [PMID: 37631017 PMCID: PMC10459265 DOI: 10.3390/ph16081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The drug resistance of pathogenic bacteria is often due efflux pumps-specific proteins that remove foreign compounds from bacterial cells. To overcome drug resistance, adjuvants are often used that can inhibit efflux pumps or other systems that ensure the resistance of bacteria to the action of antibiotics. We assumed that a new level of effectiveness with the use of an antibiotic + an adjuvant pair could be achieved by their joint delivery into the pathogen. To test this hypothesis, we constructed a series of molecular carriers based on poly-(olygo-, dendry)mers based on cyclodextrin-grafted PEI or mannan, as well as glycol chitosan, covalently bound to antibiotic, adjuvant, and the oligosaccharide ligand to the macrophage mannose receptor (CD206), which we studied earlier and showed high efficiency and selectivity of delivery of a therapeutic "cargo" to macrophages. Moxifloxacin was used as an antibiotic, and terpenoid and allylbenzene compounds were used as adjuvants, for which we previously discovered the ability to inhibit bacterial efflux pumps. We show that: (a) the resulting structures were stable in vitro for a long time (up to 10 days); (b) they were adsorbed on bacterial cells, providing a local increase in the concentration of the antibiotic and adjuvant in pathogen cells; (c) they were internalized by bacterial cells, ensuring the accumulation of both antibiotic and adjuvant inside bacterial cells; (d) the adjuvant, after entering the bacterial cell, provided inhibition of the efflux pumps; (e) due to this action of the adjuvant, combined with the targeted delivery by the carrier, the antibiotic's half-life in rats increased by more than 2 times, the effective concentration of the drug in the blood plasma (AUC) increased up to 8-10 times; (f) a significant increase in the effectiveness of the antibacterial action against Gram+ and Gram- cells was achieved (up to 3 times). Potentially, such an approach would significantly increase the effectiveness of therapies for a number of infectious and other diseases, reduce the dosage of antibiotics, shorten the duration of treatment, and reduce the risk of developing bacterial resistance. Moreover, the use of a polymer carrier with covalently bound organic molecules of different structures will avoid problems linked to different (suboptimal) solubility and bio-distribution of the administered molecules, which would be almost inevitable when using the same compounds separately. It would be very difficult to find antibiotic/adjuvant pairs that simultaneously achieve optimal concentrations in the same target cells. In our case, terpenoids and alkylbenzenes used as adjuvants are practically insoluble as individual compounds, and their unacceptable pharmacological properties would not allow them to be used as efflux pump inhibitors.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Maria P. Davydova
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospect 27/1, 119192 Moscow, Russia
| | - Milan R. Danilov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Sergey S. Krylov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
12
|
Zlotnikov ID, Savchenko IV, Kudryashova EV. Fluorescent Probes with Förster Resonance Energy Transfer Function for Monitoring the Gelation and Formation of Nanoparticles Based on Chitosan Copolymers. J Funct Biomater 2023; 14:401. [PMID: 37623646 PMCID: PMC10455860 DOI: 10.3390/jfb14080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Nanogel-forming polymers such as chitosan and alginic acid have a number of practical applications in the fields of drug delivery, food technology and agrotechnology as biocompatible, biodegradable polymers. Unlike bulk macrogel formation, which is followed by visually or easily detectable changes and physical parameters, such as viscosity or turbidity, the formation of nanogels is not followed by such changes and is therefore very difficult to track. The counterflow extrusion method (or analogues) enables gel nanoparticle formation for certain polymers, including chitosan and its derivatives. DLS or TEM, which are typically used for their characterization, only allow for the study of the already-formed nanoparticles. Alternatively, one might introduce a fluorescent dye into the gel-forming polymer, with the purpose of monitoring the effect of its microenvironment on the fluorescence spectra. But apparently, this approach does not provide a sufficiently specific signal, as the microenvironment may be affected by a big number of various factors (such as pH changes) including but not limited to gel formation per se. Here, we propose a new approach, based on the FRET effect, which we believe is much more specific and enables the elucidation of nanogel formation process in real time. Tryptophan-Pyrene is suggested as one of the donor-acceptor pairs, yielding the FRET effect when the two compounds are in close proximity to one another. We covalently attached Pyrene (the acceptor) to the chitosan (or PEG-chitosan) polymeric chain. The amount of introduced Pyrene was low enough to produce no significant effect on the properties of the resulting gel nanoparticles, but high enough to detect the FRET effect upon its interaction with Trp. When the Pyr-modified chitosan and Trp are both present in the solution, no FRET effect is observed. But as soon as the gel formation is initiated using the counterflow extrusion method, the FRET effect is easily detectable, manifested in a sharp increase in the fluorescence intensity of the pyrene acceptor and reflecting the gel formation process in real time. Apparently, the gel formation promotes the Trp-Pyr stacking interaction, which is deemed necessary for the FRET effect, and which does not occur in the solution. Further, we observed a similar FRET effect when the chitosan gel formation is a result of the covalent crosslinking of chitosan chains with genipin. Interestingly, using ovalbumin, having numerous Trp exposed on the protein surface instead of individual Trp yields a FRET effect similar to Trp. In all cases, we were able to detect the pH-, concentration- and temperature-dependent behaviors of the polymers as well as the kinetics of the gel formation for both nanogels and macrogels. These findings indicate a broad applicability of FRET-based analysis in biomedical practice, ranging from the optimization of gel formation to the encapsulation of therapeutic agents to food and biomedical technologies.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| |
Collapse
|
13
|
Zlotnikov ID, Ezhov AA, Ferberg AS, Krylov SS, Semenova MN, Semenov VV, Kudryashova EV. Polymeric Micelles Formulation of Combretastatin Derivatives with Enhanced Solubility, Cytostatic Activity and Selectivity against Cancer Cells. Pharmaceutics 2023; 15:1613. [PMID: 37376064 DOI: 10.3390/pharmaceutics15061613] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Combretastatin derivatives is a promising class of antitumor agents, tubulin assembly inhibitors. However, due to poor solubility and insufficient selectivity to tumor cells, we believe, their therapeutic potential has not been fully realized yet. This paper describes polymeric micelles based on chitosan (a polycation that causes pH and thermosensitivity of micelles) and fatty acids (stearic, lipoic, oleic and mercaptoundecanoic), which were used as a carrier for a range of combretastatin derivatives and reference organic compounds, demonstrating otherwise impossible delivery to tumor cells, at the same time substantially reduced penetration into normal cells. Polymers containing sulfur atoms in hydrophobic tails form micelles with a zeta potential of about 30 mV, which increases to 40-45 mV when cytostatics are loaded. Polymers with tails of oleic and stearic acids form poorly charged micelles. The use of polymeric 400 nm micelles provides the dissolution of hydrophobic potential drug molecules. Micelles could significantly increase the selectivity of cytostatics against tumors, which has been shown using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, Fourier transform infrared (FTIR) spectroscopy, flow cytometry and fluorescence microscopy. Atomic force microscopy presented the difference between the unloaded micelles and those loaded with the drug: the size of the former was 30 nm on average, while the latter had a "disc-like" shape and a size of about 450 nm. The loading of drugs into the core of micelles was confirmed by UV and fluorescence spectroscopy methods; shifts of absorption and emission maxima into the long-wavelength region by tens of nm was observed. With FTIR spectroscopy, a high interaction efficiency of micelles with the drug on cells was demonstrated, but at the same time, selective absorption was observed: micellar cytostatics penetrate into A549 cancer cells 1.5-2 times better than the simple form of the drugs. Moreover, in normal HEK293T, the penetration of the drug is reduced. The proposed mechanism for reducing the accumulation of drugs in normal cells is the adsorption of micelles on the cell surface and the preservation of cytostatics to penetrate inside the cells. At the same time, in cancer cells, due to the structural features of the micelles, they penetrate inside, merging with the membrane and releasing the drug by pH- and glutathione-sensitive mechanisms. From a methodological point of view, we have proposed a powerful approach to the observation of micelles using a flow cytometer, which, in addition, allows us to quantify the cells that have absorbed/adsorbed cytostatic fluorophore and distinguish between specific and non-specific binding. Thus, we present polymeric micelles as drug delivery systems in tumors using the example of combretastatin derivatives and model fluorophore-cytostatic rhodamine 6G.
Collapse
Affiliation(s)
- Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexander A Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia
| | - Artem S Ferberg
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Sergey S Krylov
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Marina N Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, Vavilov Street 26, 119334 Moscow, Russia
| | - Victor V Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
14
|
Zlotnikov ID, Malashkeevich SM, Belogurova NG, Kudryashova EV. Thermoreversible Gels Based on Chitosan Copolymers as "Intelligent" Drug Delivery System with Prolonged Action for Intramuscular Injection. Pharmaceutics 2023; 15:pharmaceutics15051478. [PMID: 37242720 DOI: 10.3390/pharmaceutics15051478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Thermosensitive gels based on copolymers (PEG-chitosan, chitosan-polyethylenimine, chitosan-arginine and glycol-chitosan-spermine) are presented as promising polycations for the formation of DNA polyplexes and the potential for the development of drugs with prolonged release (up to 30 days). Being in liquid form at room temperature, such compounds can be injected into muscle tissue with rapid gel formation at human body temperature. An intramuscular depot is formed with a therapeutic agent that provides a gradual release of the drug, such as an antibacterial or cytostatic. The physico-chemical parameters of the formation of polyplexes between polycationic polymers of various compositions and molecular architecture and DNA were studied via FTIR, UV-vis and fluorescence spectroscopy using the dyes rhodamine 6G (R6G) and acridine orange (AO). The competitive displacement of AO from AO-DNA complexes showed that, with a ratio of N/P = 1, most of the DNA is bound to a polycation. During the formation of polyplexes, the DNA charge is neutralized by a polycation, which is reflected in electrophoretic immobility. The cationic polymers described in this work at a concentration of 1-4% are capable of forming gels, and the thermoreversible property is most characteristic of pegylated chitosan. BSA, as a model anionic molecule, is released by half in 5 days from the Chit5-PEG5 gel; full release is achieved in 18-20 days. At the same time, in 5 days, the gel is destroyed up to 30%, and in 20 days, by 90% (release of chitosan particles). For the first time, flow cytometry was used to study DNA polyplexes, which showed the existence of fluorescent particles in a much larger number in combination with free DNA. Thus, functional stimulus-sensitive polymers are potentially applicable for the creation of prolonged therapeutic formulations for gene delivery systems, which were obtained. The revealed regularities appear to be a platform for the design of polyplexes with controllable stability, in particular, fulfilling the requirements imposed for gene delivery vehicles.
Collapse
Affiliation(s)
- Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | | | - Natalia G Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| |
Collapse
|