McGee JE, Kirsch JR, Kenney D, Chavez E, Shih TY, Douam F, Wong WW, Grinstaff MW. Complete substitution with modified nucleotides suppresses the early interferon response and increases the potency of self-amplifying RNA.
BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557994. [PMID:
37745375 PMCID:
PMC10516017 DOI:
10.1101/2023.09.15.557994]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Self-amplifying RNA (saRNA) will revolutionize vaccines and in situ therapeutics by enabling protein expression for longer duration at lower doses. However, a major barrier to saRNA efficacy is the potent early interferon response triggered upon cellular entry, resulting in saRNA degradation and translational inhibition. Substitution of mRNA with modified nucleotides (modNTPs), such as N1-methylpseudouridine (N1mΨ), reduce the interferon response and enhance expression levels. Multiple attempts to use modNTPs in saRNA have been unsuccessful, leading to the conclusion that modNTPs are incompatible with saRNA, thus hindering further development. Here, contrary to the common dogma in the field, we identify multiple modNTPs that when incorporated into saRNA at 100% substitution confer immune evasion and enhance expression potency. Transfection efficiency enhances by roughly an order of magnitude in difficult to transfect cell types compared to unmodified saRNA, and interferon production reduces by >8 fold compared to unmodified saRNA in human peripheral blood mononuclear cells (PBMCs). Furthermore, we demonstrate expression of viral antigens in vitro and observe significant protection against lethal challenge with a mouse-adapted SARS-CoV-2 strain in vivo . A modified saRNA vaccine, at 100-fold lower dose than a modified mRNA vaccine, results in a statistically improved performance to unmodified saRNA and statistically equivalent performance to modified mRNA. This discovery considerably broadens the potential scope of self-amplifying RNA, enabling entry into previously impossible cell types, as well as the potential to apply saRNA technology to non-vaccine modalities such as cell therapy and protein replacement.
Collapse