1
|
Yu Z, Fu X, Lucas T, Zhao H, Chen C, Dubail I, Chen Y, Patriarche G, Gateau J, Gazeau F, Jamet A, Lepoitevin M, Serre C. MOF-Enhanced Phototherapeutic Wound Dressings Against Drug-Resistant Bacteria. Adv Healthc Mater 2024:e2402418. [PMID: 39460484 DOI: 10.1002/adhm.202402418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Phototherapy is a low-risk alternative to traditional antibiotics against drug-resistant bacterial infections. However, optimizing phototherapy agents, refining treatment conditions, and addressing misuse of agents, remain a formidable challenge. This study introduces a novel concept leveraging the unique customizability of metal-organic frameworks (MOFs) to house size-matched dye molecules in "single rooms". The mesoporous iron(III) carboxylate nanoMOF, MIL-100(Fe), and the hydrophobic heptamethine cyanine photothermal dye (Cy7), IR775, are selected as model systems. Their combination is predicted to minimize dye-dye interactions, leading to exceptional photostability and efficient light-to-heat conversion. Furthermore, MIL-100(Fe) preserves the antimicrobial nature of hydrophobic IR775, enabling it to disrupt bacterial cell envelopes. Through electrospinning, MIL-100(Fe)@IR775 nanoparticles are shaped into a gelatin-based film dressing for the treatment of skin wounds infected by Methicillin-resistant Staphylococcus aureus (MRSA). Activation of the dressing requires only a portable near-infrared light-emitting diode (NIR LED) and induces both low-dose photodynamic therapy (LPDT) and mild-temperature photothermal therapy (MPTT). Combined with the antimicrobial properties of IR775 and ferroptosis-like lipid peroxidation induced by MIL-100(Fe), the photoactive dressing eradicates MRSA and the healing is as quick as the uninfected wounds. This safe, cost-effective, and multifunctional therapeutic wound dressing offers a promising solution to overcome the current bottleneck in phototherapy.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Xiali Fu
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team « Pathogenesis of systemic infections », Université Paris Cité, Paris, F-75015, France
| | - Theotim Lucas
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Paris, 75006, France
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, Paris, F-75006, France
| | - Heng Zhao
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Changchong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Iharilalao Dubail
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team « Pathogenesis of systemic infections », Université Paris Cité, Paris, F-75015, France
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Gilles Patriarche
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, Palaiseau, 91120, France
| | - Jérôme Gateau
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, Paris, F-75006, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Paris, 75006, France
| | - Anne Jamet
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team « Pathogenesis of systemic infections », Université Paris Cité, Paris, F-75015, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| |
Collapse
|
2
|
Li Y, Li M, Shakoor N, Wang Q, Zhu G, Jiang Y, Wang Q, Azeem I, Sun Y, Zhao W, Gao L, Zhang P, Rui Y. Metal-Organic Frameworks for Sustainable Crop Disease Management: Current Applications, Mechanistic Insights, and Future Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22985-23007. [PMID: 39380155 DOI: 10.1021/acs.jafc.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Efficient management of crop diseases and yield enhancement are essential for addressing the increasing food demands due to global population growth. Metal-organic frameworks (MOFs), which have rapidly evolved throughout the 21st century, are notable for their vast surface area, porosity, and adaptability, establishing them as highly effective vehicles for controlled drug delivery. This review methodically categorizes common MOFs employed in crop disease management and details their effectiveness against various pathogens. Additionally, by critically evaluating existing research, it outlines strategic approaches for the design of drug-delivery MOFs and explains the mechanisms through which MOFs enhance disease resistance. Finally, this paper identifies the current challenges in MOF research for crop disease management and suggests directions for future research. Through this in-depth review, the paper seeks to enrich the understanding of MOFs applications in crop disease management and offers valuable insights for researchers and practitioners.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences Institute of Plant Protection, Beijing 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan 063305, China
- China Agricultural University Professor Workstation of Wuqiang County, Hengshui 053000, China
| |
Collapse
|
3
|
Haikal RR, El Salakawy N, Ibrahim A, Ali SL, Mamdouh W. Synergistic antioxidant and antibacterial effects of a Zn-ascorbate metal-organic framework loaded with marjoram essential oil. NANOSCALE ADVANCES 2024; 6:4664-4671. [PMID: 39263404 PMCID: PMC11386125 DOI: 10.1039/d4na00519h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
Antimicrobial resistance (AMR) has become an immense threat to public health leading to an urgent need for development of new technologies to tackle such a challenge. Plant-based drugs, specifically essential oils (EOs) and plant extracts, have shown significant potential as effective green antimicrobial agents. However, they suffer from high volatility and low thermal stability resulting in their inefficient utilization in commercial settings. Among the various nanoencapsulation technologies reported, metal-organic frameworks (MOFs) have been recently investigated as potential nanocarriers of EOs in attempt to enhance their stability. Herein, we report the utilization of Zn-ascorbate MOF for the encapsulation of marjoram essential oil (MEO) with synergistic antioxidant and antibacterial activities. The prepared composite was thoroughly characterized via a number of techniques and its antibacterial performance was investigated against various strains of Gram-negative and Gram-positive bacteria. The results demonstrated that the antioxidant activity originated from the ascorbic acid ligand (l-Asc), while the antibacterial activity originated from Zn2+ ions as well as encapsulated MEO.
Collapse
Affiliation(s)
- Rana R Haikal
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Noha El Salakawy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Alaa Ibrahim
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Shaimaa L Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| |
Collapse
|
4
|
Ansari M, Shahlaei M, Hosseinzadeh S, Moradi S. Recent advances in nanostructured delivery systems for vancomycin. Nanomedicine (Lond) 2024; 19:1931-1951. [PMID: 39143926 PMCID: PMC11457640 DOI: 10.1080/17435889.2024.2377063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the development of new generations of antibiotics, vancomycin remained as a high-efficacy antibiotic for treating the infections caused by MRSA. Researchers have explored various nanoformulations, aiming to enhance the therapeutic efficacy of vancomycin. Such novel formulations improve the effectiveness of drug cargoes in treating bacterial infections and minimizing the risk of adverse effects. The vast of researches have focuses on enhancing the permeation ability of vancomycin through different biological barriers especially those of gastrointestinal tract. Increasing the drug loading and tuning the drug release from nanocarrier are other important goal for many conducted studies. This study reviews the newest nano-based formulations for vancomycin as a key antibiotic in treating hospitalized bacterial infections.
Collapse
Affiliation(s)
- Mohabbat Ansari
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Mashayekh E, Ghiasi ZNK, Bhia I, Khorrami ZA, Malekahmadi O, Bhia M, Malekmohammadi S, Ertas YN. Metal-Organic Frameworks for Cisplatin Delivery to Cancer Cells: A Molecular Dynamics Simulation. ACS OMEGA 2024; 9:19627-19636. [PMID: 38708264 PMCID: PMC11064028 DOI: 10.1021/acsomega.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Metal-organic frameworks (MOFs) are utilized as nanocarriers to enhance the efficiency of chemotherapy drugs, including cisplatin, which exhibit limitations such as side effects and resistance mechanisms. To evaluate the role of MOFs, we employed a molecular dynamics simulation, which, unlike other experiments, is cost-effective, less dangerous, and provides accurate results. Furthermore, we conducted molecular docking simulations to understand the interaction between cisplatin and MOF, as well as their internal interactions and how they bind to each other. Cisplatin and MOF molecules were parametrized using the Avogadro software and x2top command in GROMACS 5.1.2 and optimized by CP2K software; the Charmm-GUI site parametrized the cell cancer membrane. Three molecular dynamics simulations were conducted in four stages at various pHs, followed by simulated umbrella sampling. The simulations analyzed the pH responsiveness, total energy, Gibbs free energy, gyration radius, radial distribution function (RDF), solvent accessible surface area, and nanoparticles' toxicity. Results demonstrated that a neutral pH level (7.4) has greater adsorption and interaction compared to acidic pH values (6.4 and 5.4) because it displays the highest total energy (-17.1 kJ/mol), the highest RDF value (6.66), and the shortest distance (0.51 nm). Furthermore, the combination of cisplatin and MOFs displayed increased penetration compared to that of their individual forms. This study highlights the suitability of MOFs as nanocarriers and identifies the optimal pH values for desirable outcomes. Thus, it provides future studies with appropriate data to conduct their experiments in assessing MOFs.
Collapse
Affiliation(s)
- Elham Mashayekh
- Department
of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115, Iran
| | - Zahra Nouri Khajeh Ghiasi
- Department
of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood 36155163, Iran
| | - Iman Bhia
- Faculty
of Medicine, Shahid Beheshti University
of Medical Sciences, Tehran 1985717443, Iran
| | - Zohreh Arefi Khorrami
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Omid Malekahmadi
- Department
of Mining and Metallurgical Engineering, Yazd University, Yazd 89195, Iran
| | - Mohammed Bhia
- Department
of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Samira Malekmohammadi
- School
of Materials, University of Manchester, Engineering Building A, MECD, Manchester M1 3BB, U.K.
| | - Yavuz Nuri Ertas
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Türkiye
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye
| |
Collapse
|
6
|
Gomez GE, Hamer M, Regiart MD, Tortella GR, Seabra AB, Soler Illia GJAA, Fernández-Baldo MA. Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health. Antibiotics (Basel) 2024; 13:173. [PMID: 38391559 PMCID: PMC10885969 DOI: 10.3390/antibiotics13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Nanotechnology has emerged as a cornerstone in contemporary research, marked by the advent of advanced technologies aimed at nanoengineering materials with diverse applications, particularly to address challenges in human health. Among these challenges, antimicrobial resistance (AMR) has risen as a significant and pressing threat to public health, creating obstacles in preventing and treating persistent diseases. Despite efforts in recent decades to combat AMR, global trends indicate an ongoing and concerning increase in AMR. The primary contributors to the escalation of AMR are the misuse and overuse of various antimicrobial agents in healthcare settings. This has led to severe consequences not only in terms of compromised treatment outcomes but also in terms of substantial financial burdens. The economic impact of AMR is reflected in skyrocketing healthcare costs attributed to heightened hospital admissions and increased drug usage. To address this critical issue, it is imperative to implement effective strategies for antimicrobial therapies. This comprehensive review will explore the latest scientific breakthroughs within the metal-organic frameworks and the use of mesoporous metallic oxide derivates as antimicrobial agents. We will explore their biomedical applications in human health, shedding light on promising avenues for combating AMR. Finally, we will conclude the current state of research and offer perspectives on the future development of these nanomaterials in the ongoing battle against AMR.
Collapse
Affiliation(s)
- Germán E Gomez
- Instituto de Investigaciones en Tecnología Química (INTEQUI), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Ejército de los Andes 950, San Luis D5700BWS, Argentina
| | - Mariana Hamer
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-CONICET, Juan María Gutiérrez 1150, Los Polvorines CP1613, Argentina
| | - Matías D Regiart
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| | - Gonzalo R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Galo J A A Soler Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín-CONICET, Av. 25 de mayo 1169, San Martín B1650KNA, Argentina
| | - Martín A Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| |
Collapse
|
7
|
Vuong MDL, Horbenko Y, Frégnaux M, Christodoulou I, Martineau-Corcos C, Levitz P, Rollet AL, Gref R, Haouas M. Degradation and Erosion of Metal-Organic Frameworks: Comparative Study of a NanoMIL-100 Drug Delivery System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2086-2100. [PMID: 38166380 DOI: 10.1021/acsami.3c14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
To make a drug work better, the active substance can be incorporated into a vehicle for optimal protection and control of the drug delivery time and space. For making the drug carrier, the porous metal-organic framework (MOF) can offer high drug-loading capacity and various designs for effective drug delivery performance, biocompatibility, and biodegradability. Nevertheless, its degradation process is complex and not easily predictable, and the toxicity concern related to the MOF degradation products remains a challenge for their clinical translation. Here, we describe an in-depth molecular and nanoscale degradation mechanism of aluminum- and iron-based nanoMIL-100 materials exposed to phosphate-buffered saline. Using a combination of analytical tools, including X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and electron microscopy, we demonstrate qualitatively and quantitatively the formation of a new coordination bond between metal(III) and phosphate, trimesate release, and correlation between these two processes. Moreover, the extent of material erosion, i.e., bulk or surface erosion, was examined from the transformation of nanoparticles' surface, morphology, and interaction with water. Similar analyses show the impact of drug loading and surface coating on nanoMIL-100 degradation and drug release as a function of the metal-ligand binding strength. Our results indicate how the chemistry of nanoMIL-100(Al) and nanoMIL-100(Fe) drug carriers affects their degradation behaviors in a simulated physiological medium. This difference in behavior between the two nanoMIL-100s enables us to better correlate the nanoscale and atomic-scale mechanisms of the observed phenomena, thus validating the presented multiscale approach.
Collapse
Affiliation(s)
- Mai Dang Le Vuong
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 78000 Versailles, France
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
- PHysicochimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 75252 Paris, France
| | - Yuliia Horbenko
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 78000 Versailles, France
| | - Mathieu Frégnaux
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 78000 Versailles, France
| | - Ioanna Christodoulou
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | | | - Pierre Levitz
- PHysicochimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 75252 Paris, France
| | - Anne-Laure Rollet
- PHysicochimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 75252 Paris, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 78000 Versailles, France
| |
Collapse
|
8
|
Liu S, Ji Y, Zhu H, Shi Z, Li M, Yu Q. Gallium-based metal-organic frameworks loaded with antimicrobial peptides for synergistic killing of drug-resistant bacteria. J Mater Chem B 2023; 11:10446-10454. [PMID: 37888956 DOI: 10.1039/d3tb01754k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Increased antibiotic resistance has made bacterial infections a global concern, which requires novel non-antibiotic-dependent antibacterial strategies to address the menace. Antimicrobial peptides (AMPs) are a promising antibiotic alternative, whose antibacterial mechanism is mainly to destroy the membrane of bacteria. Gallium ions exhibit an antibacterial effect by interfering with the iron metabolism of bacteria. With the rapid development of nanotechnology, it is worth studying the potential of gallium-AMP-based nanocomposites for treating bacterial infections. Herein, novel gallium-based metal-organic frameworks (MOFs) were synthesized at room temperature, followed by in situ loading of the model AMP melittin. The obtained nanocomposites exhibited stronger antibacterial activity than pure MEL and gallium ions, achieving the effects of "one plus one is greater than two". Moreover, the nanocomposites showed favorable biocompatibility and accelerated healing of a wound infected by methicillin-resistant Staphylococcus aureus by down-regulation of inflammatory cytokines IL-6 and TNF-α. This work presents an innovative antibacterial strategy to overcome the antibiotic resistance crisis and expand the application of AMPs.
Collapse
Affiliation(s)
- Shuo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| | - Yuxin Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hangqi Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhishang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Mammari N, Duval RE. Photothermal/Photoacoustic Therapy Combined with Metal-Based Nanomaterials for the Treatment of Microbial Infections. Microorganisms 2023; 11:2084. [PMID: 37630644 PMCID: PMC10458754 DOI: 10.3390/microorganisms11082084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The increased spread and persistence of bacterial drug-resistant phenotypes remains a public health concern and has contributed significantly to the challenge of combating antibiotic resistance. Nanotechnology is considered an encouraging strategy in the fight against antibiotic-resistant bacterial infections; this new strategy should improve therapeutic efficacy and minimize side effects. Evidence has shown that various nanomaterials with antibacterial performance, such as metal-based nanoparticles (i.e., silver, gold, copper, and zinc oxide) have intrinsic antibacterial properties. These antibacterial agents, such as those made of metal oxides, carbon nanomaterials, and polymers, have been used not only to improve antibacterial efficacy but also to reduce bacterial drug resistance due to their interaction with bacteria and their photophysical properties. These nanostructures have been used as effective agents for photothermal therapy (PTT) and photodynamic therapy (PDT) to kill bacteria locally by heating or the controlled production of reactive oxygen species. Additionally, PTT or PDT therapies have also been combined with photoacoustic (PA) imaging to simultaneously improve treatment efficacy, safety, and accuracy. In this present review, we present, on the one hand, a summary of research highlighting the use of PTT-sensitive metallic nanomaterials for the treatment of bacterial and fungal infections, and, on the other hand, an overview of studies showing the PA-mediated theranostic functionality of metal-based nanomaterials.
Collapse
Affiliation(s)
- Nour Mammari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform®, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
10
|
Zhang J, Tang W, Zhang X, Song Z, Tong T. An Overview of Stimuli-Responsive Intelligent Antibacterial Nanomaterials. Pharmaceutics 2023; 15:2113. [PMID: 37631327 PMCID: PMC10458108 DOI: 10.3390/pharmaceutics15082113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Drug-resistant bacteria and infectious diseases associated with biofilms pose a significant global health threat. The integration and advancement of nanotechnology in antibacterial research offer a promising avenue to combat bacterial resistance. Nanomaterials possess numerous advantages, such as customizable designs, adjustable shapes and sizes, and the ability to synergistically utilize multiple active components, allowing for precise targeting based on specific microenvironmental variations. They serve as a promising alternative to antibiotics with diverse medical applications. Here, we discuss the formation of bacterial resistance and antibacterial strategies, and focuses on utilizing the distinctive physicochemical properties of nanomaterials to achieve inherent antibacterial effects by investigating the mechanisms of bacterial resistance. Additionally, we discuss the advancements in developing intelligent nanoscale antibacterial agents that exhibit responsiveness to both endogenous and exogenous responsive stimuli. These nanomaterials hold potential for enhanced antibacterial efficacy by utilizing stimuli such as pH, temperature, light, or ultrasound. Finally, we provide a comprehensive outlook on the existing challenges and future clinical prospects, offering valuable insights for the development of safer and more effective antibacterial nanomaterials.
Collapse
Affiliation(s)
- Jinqiao Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Wantao Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Xinyi Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Tong
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| |
Collapse
|