1
|
Upadhyay R, Ghosh P, Desavathu M. Advancement in the nose-to-brain drug delivery of FDA-approved drugs for the better management of depression and psychiatric disorders. Int J Pharm 2024:124866. [PMID: 39486490 DOI: 10.1016/j.ijpharm.2024.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The Prevalence of Depressive and Psychiatric disorders is increasing globally, and despite the availability of numerous FDA-approved drugs, treatment remains challenging. Many conventional antidepressants and antipsychotic formulations face issues such as low solubility, high first-pass metabolism, poor bioavailability, inadequate blood-brain barrier penetration, and systemic side effects. These challenges lead to reduced efficacy, slower onset of action, and decreased patient adherence to treatment. To address these problems, recent studies have explored the nose-to-brain route for drug delivery. This method offers several advantages, including non-invasive drug administration, direct access to the brain, rapid onset of action, reduced systemic exposure and side effects, avoidance of first-pass metabolism, enhanced bioavailability, precision dosing, and improved patient compliance. The formulations used for this approach include lipidic nanoparticles, polymeric nanoparticles, nasal gels, cubosomes, niosomes, polymeric micelles, nanosuspensions, nanoemulsions, nanocapsules, and elastosomes. This review analyzes and summarizes the published work on the nose-to-brain delivery of FDA-approved antidepressants and antipsychotic drugs, with a focus on the preparation, characterization, pharmacokinetics, pharmacodynamics, and toxicity profiling of these nanoformulations.
Collapse
Affiliation(s)
- Rajshekher Upadhyay
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Pappu Ghosh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Madhuri Desavathu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
2
|
Zingale E, Bonaccorso A, D’Amico AG, Lombardo R, D’Agata V, Rautio J, Pignatello R. Formulating Resveratrol and Melatonin Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Ocular Administration Using Design of Experiments. Pharmaceutics 2024; 16:125. [PMID: 38258134 PMCID: PMC10819881 DOI: 10.3390/pharmaceutics16010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Recent studies have demonstrated that Sirtuin-1 (SIRT-1)-activating molecules exert a protective role in degenerative ocular diseases. However, these molecules hardly reach the back of the eye due to poor solubility in aqueous environments and low bioavailability after topical application on the eye's surface. Such hindrances, combined with stability issues, call for the need for innovative delivery strategies. Within this context, the development of self-nanoemulsifying drug delivery systems (SNEDDS) for SIRT-1 delivery can represent a promising approach. The aim of the work was to design and optimize SNEDDS for the ocular delivery of two natural SIRT-1 agonists, resveratrol (RSV) and melatonin (MEL), with potential implications for treating diabetic retinopathy. Pre-formulation studies were performed by a Design of Experiment (DoE) approach to construct the ternary phase diagram. The optimization phase was carried out using Response Surface Methodology (RSM). Four types of SNEDDS consisting of different surfactants (Tween® 80, Tween® 20, Solutol® HS15, and Cremophor® EL) were optimized to achieve the best physico-chemical parameters for ocular application. Stability tests indicated that SNEDDS produced with Tween® 80 was the formulation that best preserved the stability of molecules, and so it was, therefore, selected for further technological studies. The optimized formulation was prepared with Capryol® PGMC, Tween® 80, and Transcutol® P and loaded with RSV or MEL. The SNEDDS were evaluated for other parameters, such as the mean size (found to be ˂50 nm), size homogeneity (PDI < 0.2), emulsion time (around 40 s), transparency, drug content (>90%), mucoadhesion strength, in vitro drug release, pH and osmolarity, stability to dilution, and cloud point. Finally, an in vitro evaluation was performed on a rabbit corneal epithelial cell line (SIRC) to assess their cytocompatibility. The overall results suggest that SNEDDS can be used as promising nanocarriers for the ocular drug delivery of RSV and MEL.
Collapse
Affiliation(s)
- Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, Section of Systems Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Rosamaria Lombardo
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy;
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland;
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|