He J, Wang Z, Ao C, Tu C, Zhang Y, Chang C, Xiao C, Xiang E, Rao W, Li C, Wu D. A highly sensitive and specific Homo1-based real-time qPCR method for quantification of human umbilical cord mesenchymal stem cells in rats.
Biotechnol J 2024;
19:e2300484. [PMID:
38403446 DOI:
10.1002/biot.202300484]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND
Owing to the characteristics of easier access in vitro, low immunogenicity, and high plasticity, human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered as a promising cell-based drugs for clinical application. No internationally recognized technology exists to evaluate the pharmacokinetics and distribution of cell-based drugs in vivo.
METHODS
We determined the human-specific gene sequence, Homo1, from differential fragments Homo sapiens mitochondrion and Rattus norvegicus mitochondrion. The expression of Homo1 was utilized to determine the distribution of UC-MSCs in the normal and diabetic nephropathy (DN) rats.
RESULTS
We observed a significant correlation between the number of UC-MSCs and the expression level of Homo1. Following intravenous transplantation, the blood levels of UC-MSCs peaked at 30 min. A large amount of intravenously injected MSCs were trapped in the lungs, but the number of them decreased rapidly after 24 h. Additionally, the distribution of UC-MSCs in the kidneys of DN rats was significantly higher than that of normal rats.
CONCLUSIONS
In this study, we establish a highly sensitive and specific Homo1-based real-time quantitative PCR method to quantify the distribution of human UC-MSCs in rats. The method provides guidelines for the safety research of cells in preclinical stages.
Collapse