1
|
Liu M, Yang H, Wang Y, Fu W, Dong C, Ye A, Zou Y, Sun S, Han D, Zhang H, Qiu Y, Xu L. Preparation of combined colchicine with loxoprofen sodium loaded in dissolvable microneedles and its anti-gouty arthritis effect. J Drug Deliv Sci Technol 2025; 104:106471. [DOI: 10.1016/j.jddst.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
3
|
Liu H, Liang X, Peng Y, Liu G, Cheng H. Supercritical Fluids: An Innovative Strategy for Drug Development. Bioengineering (Basel) 2024; 11:788. [PMID: 39199746 PMCID: PMC11351119 DOI: 10.3390/bioengineering11080788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Nanotechnology plays a pivotal role in the biomedical field, especially in the synthesis and regulation of drug particle size. Reducing drug particles to the micron or nanometer scale can enhance bioavailability. Supercritical fluid technology, as a green drug development strategy, is expected to resolve the challenges of thermal degradation, uneven particle size, and organic solvent residue faced by traditional methods such as milling and crystallization. This paper provides an insight into the application of super-stable homogeneous intermix formulating technology (SHIFT) and super-table pure-nanomedicine formulation technology (SPFT) developed based on supercritical fluids for drug dispersion and micronization. These technologies significantly enhance the solubility and permeability of hydrophobic drugs by controlling the particle size and morphology, and the modified drugs show excellent therapeutic efficacy in the treatment of hepatocellular carcinoma, pathological scarring, and corneal neovascularization, and their performance and efficacy are highlighted when administered through multiple routes of administration. Overall, supercritical fluids have opened a green and efficient pathway for clinical drug development, which is expected to reduce side effects and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Xiaoliu Liang
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Yisheng Peng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Gang Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Hongwei Cheng
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau SAR 999078, China
| |
Collapse
|
4
|
Das S, Das S, Bahadur S, Mukherjee M, Nandi G, Manna S. Fabrication, evaluation, and enhanced penetration of vinyl and cellulose-engineered transdermal patch of nifedipine using essential oil as penetration enhancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1400-1420. [PMID: 38502545 DOI: 10.1080/09205063.2024.2330682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
The aim of this study was to develop and evaluate the transdermal patch formulations of nifedipine. The patch formulations containing nifedipine were prepared and optimized with different ratios of vinyl and cellulose-derived polymers, drug contents, and permeation enhancers. Among the various formulations, the patch formulation containing a 1:5 ratio of ethyl cellulose and polyvinyl pyrrolidone was selected for ex vivo pharmacokinetic study based on in vitro permeation studies using stratum corneum of the pig's skin. The cumulative percentage release after the transdermal administration of the optimized patch formulation was 71.43%, and the plasma concentration of nifedipine was maintained for 16 hrs. The physicochemical evaluation study including flatness, thickness, moisture content and uptake, drug content in vitro release, and ex vivo permeation indicated satisfactory results. The formulation batch with clove oil as a penetration enhancer has shown better ex vivo permeation as compared to the formulations without enhancers and another synthetic enhancer. These results suggest that the optimized patch formulation Q3 could be further developed for clinical applications, providing the therapeutic plasma level of nifedipine over an extended period. Hence analyzing the results of the evaluation tests, in vitro and ex vivo data on the preparation and optimization of nifedipine-loaded transdermal patch, it can be concluded that the formulation shows its feasibility as an effective transdermal delivery system for nifedipine.
Collapse
Affiliation(s)
- Stabak Das
- Department of Pharmaceutical Technology, Brainware University, Barasat, India
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, India
| | - Sudip Das
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, India
| | - Sanjib Bahadur
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, India
| | - Maitreyee Mukherjee
- Department of Pharmaceutical Technology, Brainware University, Barasat, India
| | - Gouranga Nandi
- Division of Pharmaceutics, Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist, Darjeeling, India
| | - Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, India
| |
Collapse
|
5
|
Pereira R, Vinayakumar KB, Sillankorva S. Polymeric Microneedles for Health Care Monitoring: An Emerging Trend. ACS Sens 2024; 9:2294-2309. [PMID: 38654679 PMCID: PMC11129353 DOI: 10.1021/acssensors.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Bioanalyte collection by blood draw is a painful process, prone to needle phobia and injuries. Microneedles can be engineered to penetrate the epidermal skin barrier and collect analytes from the interstitial fluid, arising as a safe, painless, and effective alternative to hypodermic needles. Although there are plenty of reviews on the various types of microneedles and their use as drug delivery systems, there is a lack of systematization on the application of polymeric microneedles for diagnosis. In this review, we focus on the current state of the art of this field, while providing information on safety, preclinical and clinical trials, and market distribution, to outline what we believe will be the future of health monitoring.
Collapse
Affiliation(s)
- Raquel
L. Pereira
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - K. B. Vinayakumar
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Sillankorva
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
6
|
Aldawood FK, Parupelli SK, Andar A, Desai S. 3D Printing of Biodegradable Polymeric Microneedles for Transdermal Drug Delivery Applications. Pharmaceutics 2024; 16:237. [PMID: 38399291 PMCID: PMC10893432 DOI: 10.3390/pharmaceutics16020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Microneedle (MN) technology is an optimal choice for the delivery of drugs via the transdermal route, with a minimally invasive procedure. MN applications are varied from drug delivery, cosmetics, tissue engineering, vaccine delivery, and disease diagnostics. The MN is a biomedical device that offers many advantages including but not limited to a painless experience, being time-effective, and real-time sensing. This research implements additive manufacturing (AM) technology to fabricate MN arrays for advanced therapeutic applications. Stereolithography (SLA) was used to fabricate six MN designs with three aspect ratios. The MN array included conical-shaped 100 needles (10 × 10 needle) in each array. The microneedles were characterized using optical and scanning electron microscopy to evaluate the dimensional accuracy. Further, mechanical and insertion tests were performed to analyze the mechanical strength and skin penetration capabilities of the polymeric MN. MNs with higher aspect ratios had higher deformation characteristics suitable for penetration to deeper levels beyond the stratum corneum. MNs with both 0.3 mm and 0.4 mm base diameters displayed consistent force-displacement behavior during a skin-equivalent penetration test. This research establishes guidelines for fabricating polymeric MN for high-accuracy and low-cost 3D printing.
Collapse
Affiliation(s)
- Faisal Khaled Aldawood
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia;
| | - Santosh Kumar Parupelli
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Abhay Andar
- Champions Oncology, Inc., 1 University Plaza Dr, Hackensack, NJ 07601, USA;
| | - Salil Desai
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| |
Collapse
|