1
|
Wacira TN, Makonde HM, Bosire CM, Kibiti CM. Molecular Characterization and Antibacterial Potential of Endophytic Fungal Isolates from Selected Mangroves along the Coastline of Kenya. Int J Microbiol 2024; 2024:1261721. [PMID: 39280854 PMCID: PMC11398959 DOI: 10.1155/2024/1261721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing emergence and re-emergence of resistant pathogenic microbes causes a health threat to the human population. Scientists have been striving to find novel bioactive compounds and drugs to overcome these obstacles. This study aimed to characterize mangrove endophytic fungi and evaluate their antibacterial activity. Heritiera littoralis, Rhizophora mucronata, Bruguiera gymnorrhiza, Avicennia marina, and Xylocarpus granatum species were collected from Tudor Creek, Mida Creek, and Gazi Bay. A total of 30 fungal isolates were subjected to molecular identification based on analysis of their ITS gene region. The isolates in the inferred phylogenetic trees were affiliated with the genus Aspergillus. Ethyl acetate and butanol crude extracts of 38.2% of the 76 isolated fungal endophytes and eight mycelia samples were screened for antibacterial activity against Staphylococcus aureus (ATCC 27853), Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 25923) using the disc diffusion method. A. marina and R. mucronata harbored the most fungal endophytes that showed the highest antibacterial activity. Seven fungal broth extracts exhibited higher antibacterial activities against the tested microorganisms than the positive control. The minimum inhibitory concentration (MIC) activity for the isolates demonstrated that the ethyl acetate extract of a root endophytic fungal isolate (RC6) (3.31 ± 0.01) of A. marina is a strong inhibitor since it showed significantly lower MIC activity compared to the positive control (3.84 ± 0.00) against Pseudomonas aeruginosa (P < 0.05). Therefore, this study confirms that mangrove species harbor fungal isolates that have antibacterial activity and hence could serve as a novel source of antibiotics. It is recommended that the pure compounds from these extracts be isolated for further bioactivity tests and structural elucidation for consideration as lead molecules in drug discovery. In addition, the genes responsible for the enhanced bioactivity in these isolates can be characterized and bioengineered for pharmaceutical application.
Collapse
Affiliation(s)
- Teresia Nyambura Wacira
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
- Kenya Marine and Fisheries Research Institute P.O. Box 1881-40100, Kisumu, Kenya
| | - Huxley Mae Makonde
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| | - Carren Moraa Bosire
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| |
Collapse
|
2
|
Saeedi R, Seyedi A, Esmaeilizadeh M, Seyedi N, Morteza Zahedi S, Malekzadeh MR. Improving the performance of the photosynthetic apparatus of Citrus sinensis with the use of chitosan-selenium nanocomposite (CS + Se NPs) under salinity stress. BMC PLANT BIOLOGY 2024; 24:745. [PMID: 39098917 PMCID: PMC11299350 DOI: 10.1186/s12870-024-05462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Abiotic stress, such as salinity, affects the photosynthetic apparatus of plants. It is reported that the use of selenium nanoparticles (Se NPs), and biochemical compounds such as chitosan (CS) increase the tolerance of plants to stress conditions. Therefore, this study aimed to elucidate the potential of Se NPs, CS, and their composite (CS + Se NPs) in improving the photosynthetic apparatus of C. sinensis under salt stress in greenhouse conditions. The grafted seedlings of C. sinensis cv. Valencia after adapting to the greenhouse condition, were imposed with 0, 50, and 100 mM NaCl. After two weeks, the plants were foliar sprayed with distilled water (control), CS (0.1% w/v), Se NPs (20 mg L- 1), and CS + Se NPs (10 and 20 mg L- 1). Three months after treatment, the levels of photosynthetic pigments, leaf gas exchange, and chlorophyll fluorescence in the treated plants were evaluated. RESULTS Under salinity stress, total chlorophyll, carotenoid, and SPAD values decreased by 31%, 48%, and 28% respectively, and Fv/Fm also decreased compared to the control, while the ratio of absorption flux (ABS), dissipated energy flux (DI0) and maximal trapping rate of PSII (TR0) to RC (a measure of PSII apparent antenna size) were increased. Under moderate (50 mM NaCl) and intense (100 mM NaCl) salinity stress, the application of CS + Se NPs significantly increased the levels of photosynthetic pigments and the Fv/Fm value compared to plants treated with distilled water. CONCLUSIONS It may be inferred that foliar treatment with CS + Se NPs can sustain the photosynthetic ability of C. sinensis under salinity stress and minimize its deleterious effects on photosynthesis.
Collapse
Affiliation(s)
- Reza Saeedi
- Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Azam Seyedi
- Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | - Majid Esmaeilizadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran
| | - Neda Seyedi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mohammad Reza Malekzadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran
| |
Collapse
|
3
|
Pasaribu T, Sinurat AP, Silalahi M, Lase JA. Phytogenic cocktails fed in different feeding regimes as alternatives to antibiotics for improving performance, intestinal microbial, and carcass characteristics of slow growth chickens. Vet World 2024; 17:1423-1429. [PMID: 39185039 PMCID: PMC11344117 DOI: 10.14202/vetworld.2024.1423-1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/29/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The phytogenic cocktail (PC) is a unique combination of natural plant extracts consisting of coconut shell smoke, clove leaf extract, and mangosteen rind extract, predominantly containing phenol, eugenol, and α-mangostin. Chicken performance can be improved by its antibacterial properties. This study aimed to test PC as a replacement for antibiotic growth promoters (AGPs), assessing its impact on performance, intestinal microbes, and carcass traits in slow growth KUB chickens. Materials and Methods Two hundred and forty KUB chicks were distributed randomly to five dietary groups. Each group constituted six replicates, one replicate contained eight chicks. The treatments included the control diet (CD) with no additives, CD with 50 ppm Zinc bacitracin as an additive (AGPs), CD paired with 198 mL PC/ton feed provided for the initial 12 weeks (PC1), CD with 198 mL PC/ton feed given for the first 4 weeks (PC2), and CD supplied with 198 mL PC/ton feed for the first 8 weeks (PC3). Performance and mortality indicators were assessed during the feeding stage up to 12 weeks of age, while intestinal total microbial count and carcass characteristics were determined at 12 weeks. Duncan's multiple-range test identified differences among the treatments in the randomized experiment. Results The AGPs group weighed significantly more (p < 0.05) than PC2 but not significantly different (p > 0.05) from Control, PC1, and PC3 at 4 weeks. At 8 weeks, there was no significant difference (p > 0.05) in the body weight (BW) between the AGP, CD, and PC groups. The AGPs group had a significantly greater BW than PC1 and PC2 at 12 weeks (p < 0.05), but was comparable to CD and PC3 (p > 0.05). During the starter phase (0-4 weeks), dietary addition of AGPs or PCs significantly reduced feed intake (p < 0.05); however, no significant effect (p > 0.05) was observed during the later feeding periods (0-8 or 0-12 weeks). During the starter period, PC3 yielded the best feed conversion ratio, slightly surpassing AGPs and significantly (p < 0.05) outperforming CD. No significant variations (p > 0.05) were detected in the carcasses among the treatments. The reduction of abdominal fat relative weight was significant (p < 0.05) during the first 8 weeks of PC feeding. After the 12-week trial, no significant difference (p > 0.05) was observed in the proportionate weights of the crop, proventriculus, gizzard, pancreas, cecum, spleen, bursa of Fabricius, heart, and liver. The reduction in the intestinal microbe population due to AGPs or PC was not statistically significant (p > 0.05). About 100% viability was confirmed by the absence of mortality throughout the study. Conclusion PC supplementation in KUB chicken feed enhances their performance. The optimal feeding regimes were effective during the first 8 weeks of age. In the 0-4 week time frame, feeding the PC to the chicken worsened performance whereas no improvement was observed in the 0-12 week period. The application enhanced weight loss, feed efficiency, and reduced abdominal fat. Based on the research findings, the PC can replace AGPs as a feed additive due to comparable or superior improvement results.
Collapse
Affiliation(s)
- Tiurma Pasaribu
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| | - Arnold P. Sinurat
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| | - Marsudin Silalahi
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| | - Jonathan Anugrah Lase
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| |
Collapse
|
4
|
Aqel H, Farah H. Seriphidium herba-alba (Asso): A comprehensive study of essential oils, extracts, and their antimicrobial properties. PLoS One 2024; 19:e0302329. [PMID: 38662667 PMCID: PMC11045107 DOI: 10.1371/journal.pone.0302329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Seriphidium herba-alba (Asso), a plant celebrated for its therapeutic qualities, is widely used in traditional medicinal practices throughout the Middle East and North Africa. In a detailed study of Seriphidium herba-alba (Asso), essential oils and extracts were analyzed for their chemical composition and antimicrobial properties. The essential oil, characterized using mass spectrometry and retention index methods, revealed a complex blend of 52 compounds, with santolina alcohol, α-thujone, β-thujone, and chrysanthenone as major constituents. Extraction yields varied significantly, depending on the plant part and method used; notably, methanol soaking of aerial parts yielded the most extract at 17.75%. The antimicrobial analysis showed that the extracts had selective antibacterial activity, particularly against Staphylococcus aureus, and broad-spectrum antifungal activity against organisms such as Candida albicans and Aspergillus spp. The methanol-soaked extract demonstrated the strongest antimicrobial properties, indicating its potential as a natural antimicrobial source. This study not only underscores the therapeutic potential of Seriphidium herba-alba (Asso) in pharmaceutical applications but also sets a foundation for future research focused on isolating specific bioactive compounds and in vivo testing.
Collapse
Affiliation(s)
- Hazem Aqel
- Basic Medical Sciences Department, Al-Balqa’ Applied University, Salt, Jordan
| | - Husni Farah
- Medical Laboratory Sciences Department, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
5
|
Mohamed AS, Elmi A, Spina R, Kordofani MAY, Laurain-Mattar D, Nour H, Abchir O, Chtita S. In vitro and in silico analysis for elucidation of antioxidant potential of Djiboutian Avicennia Marina (Forsk.) Vierh. phytochemicals. J Biomol Struct Dyn 2024; 42:3410-3425. [PMID: 37194334 DOI: 10.1080/07391102.2023.2213338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
The present work aims to study the phytochemical composition, the antioxidant capacity of the crude extracts, and the fraction of extract giving the best antioxidant activity of Avicennia marina. The leaves contain high TFC compared to other parts of the plant, whereas fruits have the highest amount of TPC. Fat-soluble pigments are strongly present in the leaves of Avicennia marina i.e. β-carotene, lycopene, chlorophyll a, and chlorophyll b. The crude methanolic flower extracts showed strong DPPH and ABTS radical scavenging activity with IC50 values of 0.30 and 0.33 mg/mL respectively compared to the leaf and stem methanolic extracts for the DPPH and ABTS models with a value IC50 greater than 1 mg/mL. The crude fruit extract shows good activity with the ABTS model, unlike the DPPH model whose IC50 values are 0.95 and 0.38 mg/mL, respectively. Fractionation improved the antioxidant effect of crude flower extract. The ethyl acetate fraction exhibits the best antioxidant activity for both DPPH and ABTS methods with IC50 values of 0.125 and 0.16 mg/mL. The HR-LCMS/MS led to the identification of 13 compounds: 6 flavonoids and 7 iridoid glycoside compounds in the different parts of the plant. A bioinformatics study was performed to evaluate the antioxidant activity of the three major Iridoid glycosides towards the target protein Catalase compound II through free binding energy. Out of these three iridoid glycosides, compound C10 does not represent any toxicity, unlike C8 and C9 which showed an irritancy effect. Furthermore, molecular dynamics shows good stability of the C10-2CAG complex. HighlightsExtraction and fractionation of different part (leaf, stem, flower and fruit) of Avicennia marina.Botanical description and phytochemical analysis of crude extract methanolic. Investigation by HR-LCMS characterization of polyphenols and iridoid glycosides.Evaluation the antioxidant activity of crudes extracts methanolics by two methods in vitro DPPH and ABTS.Antioxidant activity of the fraction of the crude flower extracts presenting the best biological response.Evaluate the contribution of three major compounds 2'-Cinnamoylmussaenosidic acid, 10-O-[E-Cinnamoyl]-geniposidic acid and 10-O-[(E)-p-Coumaroyl]-geniposidic acid in the ethyl acetate fraction on the antioxidant activity through docking and dynamic molecular.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahmed Said Mohamed
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti, Djibouti
| | - Abdirahman Elmi
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti, Djibouti
| | | | - Maha A Y Kordofani
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | | | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
6
|
Adelakun AO, Awosika A, Adabanya U, Omole AE, Olopoda AI, Bello ET. Antimicrobial and Synergistic Effects of Syzygium cumini, Moringa oleifera, and Tinospora cordifolia Against Different Candida Infections. Cureus 2024; 16:e52857. [PMID: 38274587 PMCID: PMC10808863 DOI: 10.7759/cureus.52857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Introduction The burden of multiple drug resistance in human pathogens has necessitated the search for and development of antimicrobial agents with a wide range of structural classes and potentials to selectively act on the several mechanisms of actions exhibited by the pathogens. However, most synthetic antimicrobial agents have been linked with adverse side effects and high costs, furthering the need to explore more options. Syzygium cumini, Moringa oleifera, and Tinospora cordifolia are three medicinal plants used in traditional medicine systems for various infectious diseases. They contain various phytochemicals that exhibit antimicrobial activities against various bacteria, fungi, and parasites. The mechanisms of their antimicrobial action may involve the disruption of microbial cell walls and membranes, the inhibition of microbial enzyme and biofilm formation, the modulation of microbial gene expression and quorum sensing, and the induction of microbial cell death. Therefore, the present study evaluated the potentials of aqueous and ethanol extracts of S. cumini, M. oleifera, and T. cordifolia in managing infections as measured by their inhibitory effects on species. Materials and method Syzygium cumini, M. oleifera, and T. cordifolia were obtained and authenticated, and their aqueous and ethanol extracts were prepared. The antibacterial properties of the aqueous and ethanol extracts were examined. In addition to broth microdilution and biofilm development experiments, we also employed disk diffusion and agar-well diffusion techniques. The inocula of various species, including krusei, parapsilosis, utilis, albicans, and glabrata, were prepared for these assays. The synergistic effect of plant extracts with fluconazole was also evaluated. Results Syzygium cumini, M. oleifera, and T. cordifolia emerge as promising sources for the development of effective and sustainable antimicrobial interventions. Interestingly, the aqueous and ethanol extracts were effective against the selected species. Also, the synergistic combination of plant extracts with fluconazole was observed to triple the potency of the extracts. Furthermore, the potency of the plant extract as an antifungal and synergistic agent was ranked as S. cumini > M. oleifera > T. cordifolia. Conclusively, the plant extracts are effective in the management of opportunistic fungal infections.
Collapse
Affiliation(s)
- Adedayo O Adelakun
- Biological Sciences, Southeast Iowa Regional Medical Center, West Burlington, USA
| | - Ayoola Awosika
- College of Medicine, University of Illinois, Chicago, USA
| | - Uzochukwu Adabanya
- Anatomical Sciences, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Adekunle E Omole
- Cell Biology and Anatomy, Louisiana State University, Health Science Center, New Orleans, USA
| | | | - Emmanuel T Bello
- Science Laboratory Technology, New Land Polytechnic, Ilorin, NGA
| |
Collapse
|
7
|
Alam K, Ahmad N, Ahmad I, Nafees M. Pharmacological Activities of Rhododendron afghanicum; an Endemic Species of Khyber Pakhtunkhwa, Pakistan. Chem Biodivers 2023; 20:e202301273. [PMID: 37983670 DOI: 10.1002/cbdv.202301273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/22/2023]
Abstract
Majority of different kinds of metabolites having therapeutic characteristics are thought to be stored in medicinal plants. So, the present study was aimed to explore the crude extract of leaves and stem of R. afghanicum for phytochemical screening and various pharmacological activities. Toxicological studies at 100 mg/kg showed 60 % mortality where its safe dose level was 90 mg/kg. Phytochemical screening revealed the presence of alkaloids, glycosides, flavonoids and tannins in both extracts. Bacterial strains were susceptible to (RLEt) and (RLM) crude extracts except Staphylococcus aureus. RSM showed maximum anti-inflammatory activity (20.16 %) followed by RSEt (20.14 %) where lowest activity was displayed by RLEt (18.46 %). Phytotoxic activity showed a substantial dose-dependent phyto-inhibition of Lemna minor. An outstanding cytotoxic potential was displayed with LD50 values of 9.46 and 13.03 μg/ml in both stem extracts. RLEt demonstrated a dose-dependent pain relief at 30, 60 and 90 mg/kg which was 31 %, 40 % and 52 % respectively. A considerable spasmolytic action was observed by the shrinkage of jejunum muscle in albino mice. RLEt at 1000 ppm showed (17 mm) and RLM at 1000 ppm showed (16 mm) zone of inhibition against Aspergillus niger. These findings support and corroborate the traditional applications of R. afghanicum for treating digestive, analgesic and inflammatory ailments.
Collapse
Affiliation(s)
- Khan Alam
- Department of Botany, University of Peshawar, KPK, 25120, Pakistan
| | - Nadeem Ahmad
- Department of Botany, University of Peshawar, KPK, 25120, Pakistan
| | - Imran Ahmad
- Department of Botany, University of Peshawar, KPK, 25120, Pakistan
| | - Muhammad Nafees
- Department of Botany, University of Peshawar, KPK, 25120, Pakistan
| |
Collapse
|
8
|
Acharya S, Jali P, Pradhan M, Pradhan C, Mohapatra PK. Antimicrobial and Antioxidant Property of a True Mangrove Rhizophora apiculata Bl. Chem Biodivers 2023; 20:e202201144. [PMID: 37471640 DOI: 10.1002/cbdv.202201144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Mangroves are abundant in bioactive natural substances that fight off pathogenic diseases. Different parts of R. apiculata, an abundant mangrove found in Bhitarkanika National Park, India were extracted with methanol and a mixture of solvents methanol/ethanol/chloroform (60 : 20 : 20) to evaluate their antimicrobial properties. The combination solvent extract of bark had the highest zone of inhibition (ZOI) of 18.62 mm against Pseudomonas aeruginosa and a ZOI of 17.41 mm against Streptococcus mitis. Bark extracts had the highest DPPH (43 %) and FRAP (96 %) activities. The combination solvent bark extract of R. apiculata had the highest ZOI of 20.42 mm (lowest MIC of 2.12 μg/ml) against Candida albicans and ZOI of 15.33 mm (MIC of 3.02 μg/mL) against Penicillium chrysogenum. Combination bark extracts of R. apiculata contained flavanols than methanolic extracts. The crude extract of R. apiculata bark made with a mixture of solvents containing more active ingredients could be used in novel drug formulation.
Collapse
Affiliation(s)
- Srinivas Acharya
- Department of Botany, Utkal University, Bhubaneswar, 751004, Odisha, India
- Department of Environmental Science, Government Autonomous College, Phulbani, Kandhamal, 762001, Odisha, India
| | - Pallavi Jali
- Department of Botany, Utkal University, Bhubaneswar, 751004, Odisha, India
| | - Madhusmita Pradhan
- Majhighariani Institute of Technology and Science, Rayagada, 765017, Odisha, India
| | - Chinmay Pradhan
- Department of Botany, Utkal University, Bhubaneswar, 751004, Odisha, India
| | | |
Collapse
|
9
|
Sravya MVN, Simhachalam G, Kumar NSS, Govindarao K, Sandeep TR, Divya D. Anti-pathogenicity of Acanthus ilicifolius leaf extracts against A. hydrophila infection in Labeo rohita fingerlings. AMB Express 2023; 13:86. [PMID: 37598392 PMCID: PMC10440336 DOI: 10.1186/s13568-023-01595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Antibiotic resistance has become one of the inevitable barrier in aquaculture disease management. Herbal drugs has evolved to be the novel ways of combating drug resistant pathogens. In the current investigation, leaf extracts of mangrove plant, Acanthus ilicifolius were assessed for in vitro studies, among the selected four extracts, methanol extract has expressed highest antibacterial activity against P .aeruginosa (4 ± 0.3 mm), A. hydrophila (5.9 ± 0.5 mm), S. aureus (3.5 ± 0.7 mm) and B. subtilis (2.9 ± 0.5 mm) and antioxidant activity, DPPH (81.3 ± 1.0 AAEµg/ml) and FRAP (139.1 ± 1.5 AAEµg/ml).TPC and TFC were higher in the methanolic extract and has exhibited positive correlation with both DPPH and FRAP assays. Considering the in vitro efficiency, methanol extract was purified successively by column and thin layer chromatography and characterisation by GC-MS unveiled the presence of 2-Propanethiol, Trimethylphosphine, Pentanoyl chloride, Dimethylhydroxymethylphosphine and Propanedinitrile, ethylidene. A. hydrophila infected L. rohita fingerlings has survival percentage 81% and 94% in extract treated groups over 0% in negative control and 71% in positive control.
Collapse
Affiliation(s)
- M V N Sravya
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India
| | - G Simhachalam
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India.
| | - N S Sampath Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, 522213, India
| | - K Govindarao
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India
| | - T Rahul Sandeep
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India
| | - D Divya
- Department of Zoology and Aquaculture, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India
| |
Collapse
|
10
|
Gangaram S, Naidoo Y, Dewir YH, Singh M, Lin J, Murthy HN. Phytochemical Composition and Antibacterial Activity of Barleria albostellata C.B. Clarke Leaf and Stem Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2396. [PMID: 37446958 DOI: 10.3390/plants12132396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Barleria albostellata (Acanthaceae) is a shrub located in South Africa and is relatively understudied. However, plants within this genus are well known for their medicinal and ethnopharmacological properties. This study aimed to characterise the phytochemical compounds and antibacterial efficacies of B. albostellata. Phytochemical analysis, fluorescence microscopy and gas chromatography-mass spectrometry (GC-MS) analysis were performed to determine the composition of compounds that may be of medicinal importance. Crude leaf and stem extracts (hexane, chloroform and methanol) were subjected to an antibacterial analysis against several pathogenic microorganisms. The qualitative phytochemical screening of leaf and stem extracts revealed the presence various compounds. Fluorescence microscopy qualitatively assessed the leaf and stem powdered material, which displayed various colours under bright and UV light. GC-MS chromatograms represents 10-108 peaks of various compounds detected in the leaf and stem crude extracts. Major pharmacologically active compounds found in the extracts were alpha-amyrin, flavone, phenol, phytol, phytol acetate, squalene and stigmasterol. Crude extracts positively inhibited Gram-positive and Gram-negative bacteria. Significance was established at p < 0.05 for all concentrations and treatments. These results indicate that the leaves and stems of B. albostellata are rich in bioactive compounds, which could be a potential source of antibacterial agents for treating various diseases linked to the pathogenic bacteria studied. Future discoveries from this plant could advance the use of indigenous traditional medicine and provide novel drug leads.
Collapse
Affiliation(s)
- Serisha Gangaram
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Yougasphree Naidoo
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Moganavelli Singh
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Johnson Lin
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | | |
Collapse
|
11
|
Chakraborty D, Arefin P, Bhattacharjee SC, Hasan M, Sarkar R, Das S, Rahman S, Habib MS, Islam S, Jahan F, Ray G, Ferdous J, Farhana F, Islam MA, Mostafa M. Biological activity of Mesua ferrea (Nageswar) seed extracts: An in vitro and in silico study. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
12
|
Zhao Y, Wang X, Zhang L, Wang K, Wu Y, Yao J, Cui B, Chen Z. Anti-Fungal Activity of Moutan cortex Extracts against Rice Sheath Blight ( Rhizoctonia solani) and Its Action on the Pathogen's Cell Membrane. ACS OMEGA 2022; 7:47048-47055. [PMID: 36570206 PMCID: PMC9773796 DOI: 10.1021/acsomega.2c06150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Rice sheath blight (RSB) caused by Rhizoctonia solani is one of the most destructive diseases of rice (Oryza sativa). Although chemical fungicides are the most important control methods, their long-term unreasonable application has brought about problems such as environmental pollution, food risks, and non-target poisoning. Therefore, considering the extraction of fungistatic substances from plants may be an alternative in the future. In this study, we found that the Moutan cortex ethanol extract has excellent antifungal activity against R. solani, with a 100% inhibition rate at 1000 μg/mL, which aroused our great exploration interest. In-depth exploration found that the antifungal active ingredients of M. cortex were mainly concentrated in the petroleum ether extract of the M. cortex ethanol extract, which still maintained a 100% inhibition rate with 250 μg/mL, and its effective medium concentration (EC50) was 145.33 μg/mL against R. solani. Through the measurement of extracellular relative conductivity and OD260, the petroleum ether extract induced leakage of intracellular electrolytes and nucleic acids, indicating that the cell membrane was ruined. Therefore, we preliminarily determined that the cell membrane may be the target of the petroleum ether extract. Moreover, we found that petroleum ether extract reduced the content of ergosterol, a component of the cell membrane, which may be one of the reasons for the cell membrane destruction. Furthermore, the increase of MDA content would lead to membrane lipid peroxidation, further aggravating membrane damage, resulting in increased membrane permeability. Also, the destruction of the cell membrane was observed by the phenomenon of the mycelium being transparent and broken. In conclusion, this is the first report of the M. cortex petroleum ether extract exhibiting excellent antifungal activity against R. solani. The effect of the M. cortex petroleum ether extract on R. solani may be on the cell membrane, inducing the disorder of intracellular substances and metabolism, which may be one of the antifungal mechanisms against R. solani.
Collapse
Affiliation(s)
- Yongtian Zhao
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Xinge Wang
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Lian Zhang
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Keying Wang
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Yanchun Wu
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Jia Yao
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Baolu Cui
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Zhuo Chen
- Key
Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry
of Education, Guizhou University, Guiyang, Guizhou550025, China
| |
Collapse
|
13
|
Zamora-Mendoza L, Guamba E, Miño K, Romero MP, Levoyer A, Alvarez-Barreto JF, Machado A, Alexis F. Antimicrobial Properties of Plant Fibers. Molecules 2022; 27:7999. [PMID: 36432099 PMCID: PMC9699224 DOI: 10.3390/molecules27227999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Healthcare-associated infections (HAI), or nosocomial infections, are a global health and economic problem in developed and developing countries, particularly for immunocompromised patients in their intensive care units (ICUs) and surgical site hospital areas. Recurrent pathogens in HAIs prevail over antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. For this reason, natural antibacterial mechanisms are a viable alternative for HAI treatment. Natural fibers can inhibit bacterial growth, which can be considered a great advantage in these applications. Moreover, these fibers have been reported to be biocompatible and biodegradable, essential features for biomedical materials to avoid complications due to infections and significant immune responses. Consequently, tissue engineering, medical textiles, orthopedics, and dental implants, as well as cosmetics, are fields currently expanding the use of plant fibers. In this review, we will discuss the source of natural fibers with antimicrobial properties, antimicrobial mechanisms, and their biomedical applications.
Collapse
Affiliation(s)
- Lizbeth Zamora-Mendoza
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Esteban Guamba
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Karla Miño
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Maria Paula Romero
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Anghy Levoyer
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Departamento de Ingeniería Química, Quito 170901, Ecuador
| | - José F. Alvarez-Barreto
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Departamento de Ingeniería Química, Quito 170901, Ecuador
| | - António Machado
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Laboratorio de Bacteriología, Quito 170901, Ecuador
| | - Frank Alexis
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Departamento de Ingeniería Química, Quito 170901, Ecuador
| |
Collapse
|
14
|
Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY, Tan PL. Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:3009. [PMID: 36432738 PMCID: PMC9697101 DOI: 10.3390/plants11223009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Aspergillus species consists of a group of opportunistic fungi that is virulent when the immunity of the host is compromised. Among the various species, Aspergillus fumigatus is the most prevalent species. However, the prevalence of fungal infections caused by non-fumigatus Aspergillus has been increasing. Polyenes, echinocandins and azoles are the three main classes of antifungal agents being used for the treatment of aspergillosis. Nevertheless, the incidence of resistance towards these three classes has been rising over the years among several Aspergillus spp. The side effects associated with these conventional antifungal agents have also limited their usage. This urges the need for the discovery of a safe and effective antifungal agent, which presents a major challenge in medicine today. Plants present a rich source of bioactive molecules which have been proven effective against a wide range of infections and conditions. Therefore, this present review intends to examine the current literature available regarding the efficacy and mechanism of action of plant extracts and their compounds against Aspergillus spp. In addition, novel drug delivery systems of plant extracts against Aspergillus spp. were also included in this review.
Collapse
Affiliation(s)
- Lee Fang Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vi Lien Yap
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Malarvili Selvaraja
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mun Yee Leong
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Puay Luan Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
In Vitro Antidermatophytic and Biochemical Studies on Aqueous Extracts of Avicennia marina and Suaeda monoica Plants from the Yanbu Region. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many infectious diseases can be treated using herbal medicines. Therefore, plant materials play a major role in therapeutic medicine and are widely used in many developing countries. In this study, we analyzed the potential of Avicennia marina and Suaeda monoica leaf extracts as antidermatophytic agents. Molecular identification of the plant samples was performed via DNA sequencing of the internal transcribed spacer region using the primers ITS-u1 and ITS-u4. Leaf extracts of A. marina and S. monoica were prepared in cold and hot distilled water. Their antidermatophytic activities were evaluated against Trichophyton mentagrophytes, T. verrucosum, Microsporum gallinae, M. gypseum, M. canis, Epidermophyton floccosum, Candida albicans, and C. tropicalis using the dry weight method. E. floccosum was the most sensitive to both cold extracts of A. marina and S. monoica, whereas T. verrucosum was the most sensitive to the hot extract of A. marina. The minimum inhibitory concentrations of the hot extracts were determined. They ranged from 10 to 30 mg/ml, defining the anti-scavenging activity and total phenolic content of both plants. The hot extract of A. marina possessed the highest anti-scavenging activity (76%), whereas the cold extract of A. marina contained the highest phenolic content (40.06 mg/g dry weight). In addition, high-performance liquid chromatography was used to separate and estimate some of the bioactive compounds present in the plant extracts.
Collapse
|
16
|
Budiyanto F, Alhomaidi EA, Mohammed AE, Ghandourah MA, Alorfi HS, Bawakid NO, Alarif WM. Exploring the Mangrove Fruit: From the Phytochemicals to Functional Food Development and the Current Progress in the Middle East. Mar Drugs 2022; 20:303. [PMID: 35621954 PMCID: PMC9146169 DOI: 10.3390/md20050303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the logarithmic production of existing well-known food materials is unable to keep up with the demand caused by the exponential growth of the human population in terms of the equality of access to food materials. Famous local food materials with treasury properties such as mangrove fruits are an excellent source to be listed as emerging food candidates with ethnomedicinal properties. Thus, this study reviews the nutrition content of several edible mangrove fruits and the innovation to improve the fruit into a highly economic food product. Within the mangrove fruit, the levels of primary metabolites such as carbohydrates, protein, and fat are acceptable for daily intake. The mangrove fruits, seeds, and endophytic fungi are rich in phenolic compounds, limonoids, and their derivatives as the compounds present a multitude of bioactivities such as antimicrobial, anticancer, and antioxidant. In the intermediary process, the flour of mangrove fruit stands as a supplementation for the existing flour with antidiabetic or antioxidant properties. The mangrove fruit is successfully transformed into many processed food products. However, limited fruits from species such as Bruguiera gymnorrhiza, Rhizophora mucronata, Sonneratia caseolaris, and Avicennia marina are commonly upgraded into traditional food, though many more species demonstrate ethnomedicinal properties. In the Middle East, A. marina is the dominant species, and the study of the phytochemicals and fruit development is limited. Therefore, studies on the development of mangrove fruits to functional for other mangrove species are demanding. The locally accepted mangrove fruit is coveted as an alternate food material to support the sustainable development goal of eliminating world hunger in sustainable ways.
Collapse
Affiliation(s)
- Fitri Budiyanto
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
- National Research and Innovation Agency, Jl. M.H. Thamrin No. 8, Jakarta 10340, Indonesia
| | - Eman A. Alhomaidi
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed A. Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| | - Hajer S. Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Nahed O. Bawakid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Wailed M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| |
Collapse
|
17
|
Anti-Periodontopathogenic Ability of Mangrove Leaves (Aegiceras corniculatum) Ethanol Extract: In silico and in vitro study. Eur J Dent 2022; 17:46-56. [PMID: 35453169 PMCID: PMC9949921 DOI: 10.1055/s-0041-1741374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Mangrove (Aegiceras corniculatum) is an abundant natural marine resource of Indonesia, which can be explored for treating periodontal disease due to its potential as immunoregulatory, antibacterial, and antioxidant properties. The objective of this study was to investigate the active compound from Indonesian mangrove leaf extract (A. corniculatum) (MLE) for developing a herbal-based mouthwash through in silico and in vitro studies. MATERIALS AND METHODS Phytochemistry and liquid chromatography-high resolution mass spectrometry (LC-HRMS) were done to explore the active compounds in MLE. Chemistry screening and interaction, absorption, distribution, metabolism, and excretion (ADME), molecular docking simulation, and visualization of MLE active compounds as anti-inflammatory, antioxidant, and antibacterial were investigated in silico The inhibition zone of MLE against Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn) as periodontopathogenic bacterias was performed by diffusion method. Doxycycline 100 mg was used as a positive control, as a treatment group, there were five groups, namely 0%, 25%, 50%, 75%, and 100% MLE. RESULTS Alkaloid, saponin, flavonoid, triterpenoid, steroid, tannin, and quinone were detected in MLE. A high concentration of (-)epicatechin and coumaric acid (CA) were found in MLE. MLE in 100% concentration has the most effective ability to inhibit Fn, Pg, Aa growth in vitro. (-)-Epicatechin has a higher negative binding affinity than CA that can enhance heat shock protein (HSP)-30, HSP-70, HSP-90, interleukin-10, and FOXP3 and also inhibit interleukin-6, peptidoglycan, flagellin, and dectin in silico. CONCLUSION MLE of A. corniculatum has antioxidant, anti-inflammatory, and antibacterial activities that can be a potential raw material for developing a herbal-based mouthwash.
Collapse
|
18
|
Shiekh KA, Liangpanth M, Luesuwan S, Kraisitthisirintr R, Ngiwngam K, Rawdkuen S, Rachtanapun P, Karbowiak T, Tongdeesoontorn W. Preparation and Characterization of Bioactive Chitosan Film Loaded with Cashew ( Anacardium occidentale) Leaf Extract. Polymers (Basel) 2022; 14:540. [PMID: 35160528 PMCID: PMC8840661 DOI: 10.3390/polym14030540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chitosan is a biopolymer known for its rapid biodegradability and film-forming properties. This research aimed to synthesize and characterize chitosan films loaded with cashew leaf extract (CLE) obtained from immature and mature cashew leaves via aqueous and 70% ethanolic extraction methods. Freeze-dried CLE samples were dissolved in 50% dimethyl sulfoxide for in vitro analysis and chitosan film preparation. The total phenolic content of mature cashew leaves extracted in ethanol (MECLE) showed higher free radicle scavenging activity by a 2,2-diphenyl-1-picrylhydrazyl assay than the other extracts (p < 0.05). MECLE displayed a lower minimal inhibitory concentration, minimum fungal concentration, and higher zone of inhibition against Aspergillus niger compared to the other treatments (p < 0.05). Film-forming solutions were prepared using 2% chitosan, 2% chitosan with 5% mature cashew leaves extracted in deionized water (MACLE) (w/v), and 2% chitosan with 5% MECLE (w/v), respectively, to cast films. Of these, 2% chitosan (CH) with 5% MECLE (CH-MECLE-5) displayed the highest thickness and water vapor transmission rate, water vapor permeability, and oxygen transmission rate when compared to other film samples (p < 0.05). The CH-MECLE-5 film showed the highest inhibition zone of A. niger compared to the control and treated films (p < 0.05). The lightness (L*) of the CH-MECLE-5 film decreased with increment in b* values, which represented the yellow color of the film. In addition, two-photon microscopy revealed a uniform distribution via the auto-fluorescent 3D structure of MECLE in the CH-MECLE-5 film. Therefore, chitosan combined with 5% MECLE may be a potential bioactive and eco-friendly packaging film.
Collapse
Affiliation(s)
- Khursheed Ahmad Shiekh
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| | - Mooksupang Liangpanth
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
| | - Siriporn Luesuwan
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Scientific and Technological Instruments Center, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| | - Rinlanee Kraisitthisirintr
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| | - Kittaporn Ngiwngam
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
| | - Saroat Rawdkuen
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thomas Karbowiak
- UMR PAM-Food and Wine Science and Technology, Agro-Sup Dijon, Université de Bourgogne France-Comte, Esplanade Erasme, F-21000 Dijon, France;
| | - Wirongrong Tongdeesoontorn
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| |
Collapse
|
19
|
Belhadj-Salah K, Sheikh HM, Al-Hasawi ZM, Selim EM, Touliabah HE. In vitro antifungal and antibacterial potentials of organic extracts of Avicennia marina collected from Rabigh Lagoon, Red Sea Coasts in Saudi Arabia. BRAZ J BIOL 2022; 82:e265038. [DOI: 10.1590/1519-6984.265038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Mangrove shrub Avicennia marina (Forsk.) Vierh was used to test the antifungal and antibacterial activities of aerial fractions in vitro. Aspergillus sp, Candida sp and Gram positive bacteria have all been found to be sensitive to mangrove extracts, whereas Gram negative bacteria have been found to be resistant to them. Agar disc diffusion and well-cut diffusion were employed to conduct antifungal and antibacterial activities. The MICs (minimum inhibitory concentrations) for each assay have been established. Several extracts from Mangrove reduced fungus growth (diameters fluctuated between 11 and 41 mm). The Ethyl acetate fraction showed particularly strong inhibition of C. tropicalis, C. albicanis, and A. fumigatus. They had 41, 40, and 25 mm-diameter inhibition zones, respectively. Nesoral, a synthetic antifungal medication, showed no significant changes in its MICs compared to different extracts. Enterococcus faecalis and Bacillus subtilis were inhibited by Petroleum Ether extracts at MICs of 0.78 and 0.35 mg/mL, respectively. It is possible that A. marina extracts may be exploited as a viable natural alternative that may be employed in the management of various infections, notably nosocomial bacterial infections, as anti-candidiasis and as anti-aspergillosis agents.
Collapse
Affiliation(s)
- K. Belhadj-Salah
- King Abdulaziz University, Saudi Arabia; University of Monastir, Tunisia
| | - H. M. Sheikh
- King Abdulaziz University, Saudi Arabia; University of Jeddah, Saudi Arabia
| | - Z. M. Al-Hasawi
- King Abdulaziz University, Saudi Arabia; King Abdulaziz University, Saudi Arabia
| | | | - H. E. Touliabah
- King Abdulaziz University, Saudi Arabia; Ain Shams University, Egypt
| |
Collapse
|
20
|
Sohaib M, Al-Barakah FN, Migdadi HM, Husain FM. Comparative study among Avicennia marina, Phragmites australis, and Moringa oleifera based ethanolic-extracts for their antimicrobial, antioxidant, and cytotoxic activities. Saudi J Biol Sci 2022; 29:111-122. [PMID: 36105270 PMCID: PMC9465519 DOI: 10.1016/j.sjbs.2021.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance and other emerging health risk problems related to the side effects of synthetic drugs are the major factors that result in the research regarding natural products. Fruits, leaves, seeds, and oils-based phyto-constituents are the most important source of pharmaceutical products. Plant extract chemistry depends largely on species, plant components, solvent utilized, and extraction technique. This study was aimed to compare the ethanolic extracts of a mangrove plant, i.e., Avicennia marina (1E: Lower half of A. marina‘s pneumatophores, 2E: A. marina‘s leaves, 3E: Upper half of A. marina‘s pneumatophores, and 4E: A. marina‘s shoots), with non-mangrove plants, i.e., Phragmites australis (5E: P. australis‘s shoot), and Moringa oleifera (6E: M. oleifera‘s leaves) for their antimicrobial activities, total phenolic contents, antioxidant activity, and cytotoxicity potential. The antimicrobial activity assays were performed on gram-positive bacteria (i.e., Bacillus subtilis and Staphylococcus aureus), gram-negative bacteria (i.e., Escherichia coli, and Pseudomonas aeruginosa), and fungi (i.e., Aspergillus niger, Candida albicans, and Rhizopus spp.). We estimated antioxidant activity by TAC, DPPH, and FRAP assays, and the cytotoxicity was evaluated by MTT assay. The results of antimicrobial activities revealed that B. subtilis was the most sensitive to the tested plant extracts compared to S. aureus, while it only showed sensitivity to 6E and Imipenem. 5E and 6E showed statistically similar results against P. aeruginosa as compared to Ceftazidime. E. coli was the most resistant bacteria against tested plant extracts. Among the tested plant extracts, maximum inhibition activity was observed by 6E against A. niger (22 ± 0.57 mm), which was statistically similar to the response of 6E against C. albicans and 3E against Rhizopus spp. 2E did not show any activity against tested fungi. We found that 6E (208.54 ± 1.92 mg g−1) contains maximum phenolic contents followed by 1E (159.42 ± 3.22 mg g−1), 5E (131.08 ± 3.10 mg g−1), 4E (i.e., 72.41 ± 2.96 mg g−1), 3E (67.41 ± 1.68 mg g−1), and 2E (48.72 ± 1.71 mg g−1). The results depict a significant positive correlation between the phenolic contents and the antioxidant activities. As a result, phenolic content may be a natural antioxidant source.
Collapse
Affiliation(s)
- Muhammad Sohaib
- Soil Science Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Fahad N.I. Al-Barakah
- Soil Science Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Hussein M. Migdadi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- National Agricultural Research Center, Baqa 19381, Jordan
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Bioprospecting of underutilized mangrove fruits used by coastal communities in the Odisha coast, India: a review. Food Sci Biotechnol 2021; 31:139-153. [DOI: 10.1007/s10068-021-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022] Open
|
22
|
NMR and LC-MS n coupled with pharmacological network analysis for the assessment of phytochemical content and biopharmaceutical potential of Carapa procera extracts. J Pharm Biomed Anal 2021; 203:114184. [PMID: 34107441 DOI: 10.1016/j.jpba.2021.114184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/08/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
The methanolic and water extracts of Carapa procera leaves and stem barks were screened for their phytochemical content using a multi-technique approach. The extracts were also assessed for their in vitro antioxidant capacity along with their anti-diabetic (α-amylase, α-glucosidase), anti-tyrosinase, anti-elastase and anti-cholinesterase (AChE, BChE) activities. Furthermore, antibacterial and antifungal effects were determined against several bacterial and fungal strains. Data Integration Analysis for Biomarker discovery using Latent components (DIABLO) integrative analysis was conducted on collected data to determine the influence of extraction solvents and plant parts on phytochemical content, antioxidant properties and enzyme inhibitory properties of C. procera samples. Additionally, the major identified compounds were screened as modulators of multiple pathways involved in human diseases via Gene Ontology (GO) enrichment analysis. Results showed that methanolic stem bark extract exhibited the most potent ABTS scavenging, Cu2+ and Fe3+ reducing power, total antioxidant capacity and Fe2+ chelating power and displayed the highest total flavanol content. Methanolic extracts of leaves and stem barks were abounded with phenolics and had the greatest anti-AChE, anti-BChE, anti-tyrosinase and anti-elastase activities. A significant antifungal activity was observed, with the lowest minimum inhibitory concentration and minimum fungicidal values of 0.07 and 0.15 mg/mL, respectively. DIABLO integrative analysis suggested that the phytochemical content and biological activities varied significantly within the plant parts and were influenced by types of solvent used. GO enrichment analysis on the main bioactive compounds showed modulation of multiple pathways associated with cancer. Obtained results demonstrated that stem bark and leaves of C. procera can be considered as promising sources of bioactive molecules with high pharmacological values.
Collapse
|