1
|
Cowden RJ, Markussen B, Ghaley BB, Henriksen CB. The Effects of Light Spectrum and Intensity, Seeding Density, and Fertilization on Biomass, Morphology, and Resource Use Efficiency in Three Species of Brassicaceae Microgreens. PLANTS (BASEL, SWITZERLAND) 2024; 13:124. [PMID: 38202432 PMCID: PMC10780592 DOI: 10.3390/plants13010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Light is a critical component of indoor plant cultivation, as different wavelengths can influence both the physiology and morphology of plants. Furthermore, fertilization and seeding density can also potentially interact with the light recipe to affect production outcomes. However, maximizing production is an ongoing research topic, and it is often divested from resource use efficiencies. In this study, three species of microgreens-kohlrabi; mustard; and radish-were grown under five light recipes; with and without fertilizer; and at two seeding densities. We found that the different light recipes had significant effects on biomass accumulation. More specifically, we found that Far-Red light was significantly positively associated with biomass accumulation, as well as improvements in height, leaf area, and leaf weight. We also found a less strong but positive correlation with increasing amounts of Green light and biomass. Red light was negatively associated with biomass accumulation, and Blue light showed a concave downward response. We found that fertilizer improved biomass by a factor of 1.60 across species and that using a high seeding density was 37% more spatially productive. Overall, we found that it was primarily the main effects that explained microgreen production variation, and there were very few instances of significant interactions between light recipe, fertilization, and seeding density. To contextualize the cost of producing these microgreens, we also measured resource use efficiencies and found that the cheaper 24-volt LEDs at a high seeding density with fertilizer were the most efficient production environment for biomass. Therefore, this study has shown that, even with a short growing period of only four days, there was a significant influence of light recipe, fertilization, and seeding density that can change morphology, biomass accumulation, and resource input costs.
Collapse
Affiliation(s)
- Reed John Cowden
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 30, 2630 Taastrup, Denmark; (B.B.G.); (C.B.H.)
| | - Bo Markussen
- Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark;
| | - Bhim Bahadur Ghaley
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 30, 2630 Taastrup, Denmark; (B.B.G.); (C.B.H.)
| | - Christian Bugge Henriksen
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 30, 2630 Taastrup, Denmark; (B.B.G.); (C.B.H.)
| |
Collapse
|
2
|
Sale AI, Uthairatanakij A, Laohakunjit N, Jitareerat P, Kaisangsri N. Pre-harvest supplemental LED treatments led to improved postharvest quality of sweet basil leaves. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112788. [PMID: 37769604 DOI: 10.1016/j.jphotobiol.2023.112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
This study determined the effects of supplemental light-emitting diode (LED) treatments on the nutrient quality and volatile compounds of sweet basil leaves during stimulated shelf-life. Basil plants were grown in a greenhouse under different supplemental LEDs (white, blue, red, or red + blue each at 100 μmol m-2 s-1), while plants grown under sunlight served as the control. The findings revealed that plant height and canopy of basil showed a significant increase under red LED irradiation, while the leaf area was improved by the blue LED exposure. Moreover, blue LEDs enhanced the levels of phenolic compounds, total phenolic contents, total flavonoid contents, and PAL (phenylalanine ammonia-lyase) activity in harvested sweet basil leaves. Additionally, red + blue LEDs lighting stimulated the production of volatile compounds. During storage, the samples treated with blue LEDs maintained a higher quality compared to the control samples. In conclusion, the application of blue or red + blue LEDs prior to harvest can be beneficial for promoting and preserving the nutritional quality of sweet basil.
Collapse
Affiliation(s)
- Ali Ibrahim Sale
- Department of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Apiradee Uthairatanakij
- Department of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| | - Natta Laohakunjit
- Department of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pongphen Jitareerat
- Department of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nattapon Kaisangsri
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Thailand
| |
Collapse
|
3
|
Driesen E, Saeys W, De Proft M, Lauwers A, Van den Ende W. Far-Red Light Mediated Carbohydrate Concentration Changes in Leaves of Sweet Basil, a Stachyose Translocating Plant. Int J Mol Sci 2023; 24:ijms24098378. [PMID: 37176086 PMCID: PMC10179449 DOI: 10.3390/ijms24098378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Photosynthetic active radiation (PAR) refers to photons between 400 and 700 nm. These photons drive photosynthesis, providing carbohydrates for plant metabolism and development. Far-red radiation (FR, 701-750 nm) is excluded in this definition because no FR is absorbed by the plant photosynthetic pigments. However, including FR in the light spectrum provides substantial benefits for biomass production and resource-use efficiency. We investigated the effects of continuous FR addition and end-of-day additional FR to a broad white light spectrum (BW) on carbohydrate concentrations in the top and bottom leaves of sweet basil (Ocimum basilicum L.), a species that produces the raffinose family oligosaccharides raffinose and stachyose and preferentially uses the latter as transport sugar. Glucose, fructose, sucrose, raffinose, and starch concentrations increased significantly in top and bottom leaves with the addition of FR light. The increased carbohydrate pools under FR light treatments are associated with more efficient stachyose production and potentially improved phloem loading through increased sucrose homeostasis in intermediary cells. The combination of a high biomass yield, increased resource-use efficiency, and increased carbohydrate concentration in leaves in response to the addition of FR light offers opportunities for commercial plant production in controlled growth environments.
Collapse
Affiliation(s)
- Elisa Driesen
- KU Leuven, Department of Biosystems, Willem De Croylaan 42, 3001 Leuven, Belgium
| | - Wouter Saeys
- KU Leuven, Department of Biosystems, Willem De Croylaan 42, 3001 Leuven, Belgium
| | - Maurice De Proft
- KU Leuven, Department of Biosystems, Willem De Croylaan 42, 3001 Leuven, Belgium
| | | | - Wim Van den Ende
- KU Leuven, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Tabbert JM, Schulz H, Krähmer A. Facing energy limitations - approaches to increase basil ( Ocimum basilicum L.) growth and quality by different increasing light intensities emitted by a broadband LED light spectrum (400-780 nm). FRONTIERS IN PLANT SCIENCE 2022; 13:1055352. [PMID: 36507442 PMCID: PMC9731226 DOI: 10.3389/fpls.2022.1055352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Based on the current trend towards broad-bandwidth LED light spectra for basil productions in multi-tiered controlled-environment horticulture, a recently developed white broad-bandwidth LED light spectrum (400-780 nm) including far-red wavelengths with elevated red and blue light fractions was employed to cultivate basil. Four Ocimum basilicum L. cultivars (cv. Anise, cv. Cinnamon, cv. Dark Opal and cv. Thai Magic) were exposed to two different rising light intensity conditions (ILow and IHigh). In dependence of the individual cultivar-specific plant height increase over time, basil cultivars were exposed to light intensities increasing from ~ 100 to ~ 200 µmol m-2 s-1 under ILow, and from 200 to 400 µmol m-2 s-1 under IHigh (due to the exponential light intensity increases with decreasing proximity to the LED light fixtures). Within the first experiment, basils' morphological developments, biomass yields and time to marketability under both light conditions were investigated and the energy consumptions were determined to calculate the basils' light use efficiencies. In detail, cultivar-dependent differences in plant height, leaf and branch pair developments over time are described. In comparison to the ILow light conditions, IHigh resulted in accelerated developments and greater yields of all basil cultivars and expedited their marketability by 3-5 days. However, exposure to light intensities above ~ 300 µmol m-2 s-1 induced light avoidance responses in the green-leafed basil cultivars cv. Anise, cv. Cinnamon and cv. Thai Magic. In contrast, ILow resulted in consumer-preferred visual qualities and greater biomass efficiencies of the green-leafed basil cultivars and are discussed as a result of their ability to adapt well to low light conditions. Contrarily to the green-leafed cultivars, purple-leafed cv. Dark Opal developed insufficiently under ILow, but remained light-tolerant under IHigh, which is related to its high anthocyanin contents. In a second experiment, cultivars' volatile organic compound (VOC) contents and compositions over time were investigated. While VOC contents per gram of leaf dry matter gradually decreased in purple-leafed cv. Dark Opal between seedling stage to marketability, their contents gradually increased in the green cultivars. Regardless of the light treatment applied, cultivar-specific VOC compositions changed tremendously in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Jenny Manuela Tabbert
- Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hartwig Schulz
- Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
- Consulting & Project Management for Medicinal and Aromatic Plants, Stahnsdorf, Germany
| | - Andrea Krähmer
- Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| |
Collapse
|
5
|
Cavallaro V, Muleo R. The Effects of LED Light Spectra and Intensities on Plant Growth. PLANTS 2022; 11:plants11151911. [PMID: 35893615 PMCID: PMC9331218 DOI: 10.3390/plants11151911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Valeria Cavallaro
- Institute of BioEconomy (IBE), National Research Council of Italy, 95126 Catania, Italy
- Correspondence: (V.C.); (R.M.)
| | - Rosario Muleo
- Tree Physiology and Fruit Crop Biotechnology Laboratory, Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
- Correspondence: (V.C.); (R.M.)
| |
Collapse
|
6
|
Cappelli I, Fort A, Pozzebon A, Tani M, Trivellin N, Vignoli V, Bruzzi M. Autonomous IoT Monitoring Matching Spectral Artificial Light Manipulation for Horticulture. SENSORS 2022; 22:s22114046. [PMID: 35684666 PMCID: PMC9185431 DOI: 10.3390/s22114046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
This paper aims at demonstrating the energy self-sufficiency of a LoRaWAN-based sensor node for monitoring environmental parameters exploiting energy harvesting directly coming from the artificial light used in indoor horticulture. A portable polycrystalline silicon module is used to charge a Li-Po battery, employed as the power reserve of a wireless sensor node able to accurately monitor, with a 1-h period, both the physical quantities most relevant for the application, i.e., humidity, temperature and pressure, and the chemical quantities, i.e., O2 and CO2 concentrations. To this aim, the node also hosts a power-hungry NDIR sensor. Two programmable light sources were used to emulate the actual lighting conditions of greenhouses, and to prove the effectiveness of the designed autonomous system: a LED-based custom designed solar simulator and a commercial LED light especially thought for plant cultivation purposes in greenhouses. Different lighting conditions used in indoor horticulture to enhance different plant growth phases, obtained as combinations of blue, red, far-red and white spectra, were tested by field tests of the sensor node. The energy self-sufficiency of the system was demonstrated by monitoring the charging/discharging trend of the Li-Po battery. Best results are obtained when white artificial light is mixed with the far-red component, closest to the polycrystalline silicon spectral response peak.
Collapse
Affiliation(s)
- Irene Cappelli
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy; (A.F.); (M.T.); (V.V.)
- Correspondence:
| | - Ada Fort
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy; (A.F.); (M.T.); (V.V.)
| | - Alessandro Pozzebon
- Department of Information Engineering, University of Padova, 35131 Padova, Italy;
| | - Marco Tani
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy; (A.F.); (M.T.); (V.V.)
| | - Nicola Trivellin
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy;
| | - Valerio Vignoli
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy; (A.F.); (M.T.); (V.V.)
| | - Mara Bruzzi
- Department of Physics and Astronomy, University of Florence, 50019 Florence, Italy;
| |
Collapse
|
7
|
LED Illumination for High-Quality High-Yield Crop Growth in Protected Cropping Environments. PLANTS 2021; 10:plants10112470. [PMID: 34834833 PMCID: PMC8621602 DOI: 10.3390/plants10112470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023]
Abstract
Vegetables and herbs play a central role in the human diet due to their low fat and calory content and essential antioxidant, phytochemicals, and fiber. It is well known that the manipulation of light wavelengths illuminating the crops can enhance their growth rate and nutrient contents. To date, it has not been easy to generalize the effects of LED illumination because of the differences in the plant species investigated, the measured traits, the way wavelengths have been manipulated, and the plants’ growing environments. In order to address this gap, we undertook a quantitative review of LED manipulation in relation to plant traits, focusing on vegetables and herbs. Here, we use standardized measurements of biomass, antioxidant, and other quantitative characteristics together with the whole range of the photosynthetic photon flux density (PPFD). Overall, our review revealed support for the claims that the red and blue LED illumination is more reliable and efficient than full spectrum illumination and increases the plant’s biomass and nutritional value by enhancing the photosynthetic activity, antioxidant properties, phenolic, and flavonoids contents. Although LED illumination provides an efficient way to improve yield and modify plant properties, this study also highlights the broad range of responses among species, varieties traits, and the age of plant material.
Collapse
|
8
|
Overview of Multiple Applications of Basil Species and Cultivars and the Effects of Production Environmental Parameters on Yields and Secondary Metabolites in Hydroponic Systems. SUSTAINABILITY 2021. [DOI: 10.3390/su132011332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Basil (Ocimum basilicum L.), including other species and cultivars, is an excellent source of nutritional compounds, the accumulation of which can be stimulated by exogenous factors (environmental and nutritional conditions). Although best practices are relatively established for mature basil plants, microgreens production requires further research to optimize quality and quantity. The study objectives are (i) to provide an overview of the many uses of basil, (ii) collate and present common hydroponic systems available in the market, (iii) review effects of key production environment parameters on basil yields in hydroponic systems, and (iv) summarize the effects of the growth environments on yield quantity and quality of basil microgreens. The paper analyzes in detail key production parameters of basil microgreens in hydroponic systems, such as temperature, humidity, pH, electrical conductivity, dissolved oxygen, carbon dioxide, nutrient solutions, and the influence of light (quantity, quality, and photoperiods). The collated literature review has shown that basil, grown hydroponically, can tolerate high variations of environmental parameters: pH 5.1–8.5, temperature 15–24 °C, relative humidity 60–70%, electrical conductivity up to 1.2 mS cm−1, depending on the developmental stage, dissolved oxygen at 4 mg L−1 (optimally 6.5 mg L−1), and light intensity between 200 and 400 μmol m−2 s−1. The study has synthesized an overview of different production parameters to provide guidance on the optimization of environmental conditions to ensure the quantity and quality production of basil microgreens. Improving the quality of basil microgreens can ideally spur continued gastronomic interest in microgreens in general, which will encourage more entrepreneurs to grow basil and other microgreens. Hence, the study findings are a great resource to learn about the effects of different environments on basil microgreen production. This information can inform research for successful production of different species and cultivars of basil microgreens, and establishing testing protocols to improve the quantity and quality of the harvest.
Collapse
|
9
|
Zulfiqar F, Chen J, Finnegan PM, Younis A, Nafees M, Zorrig W, Hamed KB. Application of Trehalose and Salicylic Acid Mitigates Drought Stress in Sweet Basil and Improves Plant Growth. PLANTS (BASEL, SWITZERLAND) 2021; 10:1078. [PMID: 34072096 PMCID: PMC8230182 DOI: 10.3390/plants10061078] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/23/2023]
Abstract
Trehalose (Tre) and salicylic acid (SA) are increasingly used to mitigate drought stress in crop plants. In this study, a pot experiment was performed to study the influence of Tre and SA applied individually or in combination on the growth, photosynthesis, and antioxidant responses of sweet basil (Ocimum basilicum L.) exposed to drought stress. Basil plants were watered to 60% or 100% field capacity with or without treatment with 30 mM Tre and/or 1 mM SA. Drought negatively affected growth, physiological parameters, and antioxidant responses. Application of Tre and/or SA resulted in growth recovery, increased photosynthesis, and reduced oxidative stress. Application of Tre mitigated the detrimental effects of drought more than SA. Furthermore, co-application of Tre and SA largely eliminated the negative impact of drought by reducing oxidative stress through increased activities of antioxidant enzymes superoxide dismutase, peroxidase, and catalase, as well as the accumulation of the protective osmolytes proline and glycine betaine. Combined Tre and SA application improved water use efficiency and reduced the amount of malondialdehyde in drought-stressed plants. Our results suggested that combined application of Tre and SA may trigger defense mechanisms of sweet basil to better mitigate oxidative stress induced by drought stress, thereby improving plant growth.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 93100, Pakistan;
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, IFAS, University of Florida, 2725 Binion Road, Apopka, FL 32703, USA;
| | - Patrick M. Finnegan
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 93100, Pakistan;
| | - Walid Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (W.Z.); (K.B.H.)
| | - Karim Ben Hamed
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (W.Z.); (K.B.H.)
| |
Collapse
|