1
|
Zuñiga-Miranda J, Carrera-Pacheco SE, Gonzalez-Pastor R, Mayorga-Ramos A, Rodríguez-Pólit C, Heredia-Moya J, Vizuete K, Debut A, Barba-Ostria C, Coyago-Cruz E, Guamán LP. Phytosynthesis of Silver Nanoparticles Using Mansoa alliacea (Lam.) A.H. Gentry (Bignoniaceae) Leaf Extract: Characterization and Their Biological Activities. Pharmaceutics 2024; 16:1247. [PMID: 39458579 PMCID: PMC11510252 DOI: 10.3390/pharmaceutics16101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Mansoa alliacea is a native plant renowned for its medicinal properties in traditional healing in the Amazon Region. This plant is rich in polyphenols, flavonoids, anthocyanins, phenolic acids, tannins, ketones, triterpenes, as well as other bioactive compounds. Objectives. This study aims to develop an innovative, eco-friendly method for synthesizing silver nanoparticles using an aqueous extract of M. alliacea (Ma-AgNPs), enhancing the biological activities of AgNPs by leveraging the therapeutic potential of the plant's bioactive compounds. Methods. Silver nanoparticles were synthesized using the aqueous extract of M. alliacea. The biological activities of Ma-AgNPs were assessed, including antibacterial, anti-inflammatory, antioxidant, antitumor, and anti-biofilm effects, along with evaluating their hemolytic activity. Results. Quantitative analysis revealed that Ma-AgNPs exhibit potent antibacterial activity against multidrug and non-multidrug-resistant bacteria, with MIC values ranging from 1.3 to 10.0 µg/mL. The Ma-AgNPs significantly reduced NO production by 86.9% at 4 µg/mL, indicating strong anti-inflammatory effects. They demonstrated robust antioxidant activity with an IC50 of 5.54 ± 1.48 µg/mL and minimal hemolytic activity, with no hemolysis observed up to 20 µg/mL and only 4.5% at 40 µg/mL. Their antitumor properties were notable, with IC50 values between 2.9 and 5.4 µg/mL across various cell lines, and they achieved over 50% biofilm inhibition at concentrations of 30-40 µg/mL. Conclusions. These findings underscore the potential of Ma-AgNPs for biomedical applications, particularly in developing new antimicrobial agents and bioactive coatings with reduced toxicity. This research highlights a sustainable approach that not only preserves but also amplifies the inherent biological activities of plant extracts, paving the way for innovative therapeutic solutions.
Collapse
Affiliation(s)
- Johana Zuñiga-Miranda
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.)
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.)
- Departamento de Ciencias de la Vida y Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Quito 170143, Ecuador;
| | - Linda P. Guamán
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| |
Collapse
|
2
|
Saboon, Iqbal A, Bibi Y, Afzal T, Sher A, Qayyum A, Akmal M, Almoallim HS, Ansari MJ, Zeng Y. GC-MS based antioxidants characterization in Saussurea heteromalla (D. Don) Hand-Mazz by inhibition of nitric oxide generation in macrophages. Sci Rep 2024; 14:10145. [PMID: 38698070 PMCID: PMC11065987 DOI: 10.1038/s41598-024-60577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
For centuries, medicinal plants have served as the cornerstone for traditional health care systems and same practice is still prevalent today. In the Himalayan region, Saussurea heteromalla holds a significant place in traditional medicine and is used to address various health issues. Despite its historical use, little exploration has focused on its potential for scavenging free radicals and reducing inflammation. Hence, our current study aims to investigate the free radical scavenging capabilities of S. heteromalla extracts. The n-hexane extract of entire plant revealed promising activity. This extract underwent extensive extraction on a larger scale. Subsequent purification, employing column chromatography, HPLC-DAD techniques, led to the identification of active compounds, confirmed via GC-MS and the NIST database as 1-O-butyl 2-O-octyl benzene-1,2-dicarboxylate and 2,4-ditert-butylphenol. Assessing the free radical scavenging properties involved utilizing RAW-264.7 macrophages activated by lipopolysaccharides. Notably, the compound 2,4-di-tert-butylphenol exhibited remarkable scavenging abilities, demonstrating over 80% inhibition of Nitric oxide. This study stands as the inaugural report on the isolation of these compounds from S. heteromalla.
Collapse
Affiliation(s)
- Saboon
- Department of Botany, Women University Mardan, Mardan, 23200, Pakistan
| | - Asia Iqbal
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, 46300, Pakistan.
| | - Tayyiba Afzal
- Institute of Environmental Biology, Department of Plant Biology, Wroclaw University of Environmental and Life Sciences, ul. Kozuchowska 5b, PL 51-631, Wroclaw, Poland
| | - Ahmad Sher
- Institute of Agronomy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| | - Muhammad Akmal
- Institute of Soil and Environmental Sciences, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, 11545, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Bareilly, 244001, India
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650205, China.
| |
Collapse
|
3
|
Singh VK, Sahoo D, Agrahari K, Khan A, Mukhopadhyay P, Chanda D, Yadav NP. Anti-inflammatory, anti-proliferative and anti-psoriatic potential of apigenin in RAW264.7 cells, HaCaT cells and psoriasis like dermatitis in BALB/c mice. Life Sci 2023:121909. [PMID: 37414141 DOI: 10.1016/j.lfs.2023.121909] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
AIMS Psoriasis is an immune-mediated skin disease characterized by keratinocytes hyperproliferation, abnormal differentiation and inflammation. Therefore, this study aimed to investigate in-vitro and in-vivo anti-inflammatory and anti-proliferative activity to evaluate anti-psoriatic potential of apigenin. MAIN METHODS For in-vivo study, 5 % imiquimod cream was used to induce psoriasis-like skin inflammation in BALB/c mice to mimic human psoriatic conditions. PASI scores, CosCam score, histopathology, immunohistochemistry, qRT-PCR, and ELISA were done to evaluate the anti-psoriatic potential of topically applied apigenin. For in-vitro studies, LPS-induced inflammation in RAW264.7 was done, and qRT-PCR, ELISA, and immunofluorescence were conducted to evaluate the anti-inflammatory activity of apigenin. Migration and cell doubling assay in HaCaT cells were performed to assess the anti-proliferative effect of apigenin. Acute dermal toxicity profile of apigenin has also been done as per OECD guidelines. KEY FINDINGS Results showed that apigenin significantly reduce the PASI and CosCam scores, ameliorate the deteriorating histopathology, and effectively downregulated the expression of CCR 6, IL-17A, and NF-κB. Apigenin effectively downregulated the expression and secretion of pro-inflammatory cytokines through IL-23/IL-17/IL-22 axis. Apigenin suppressed nuclear translocation of NF-κB in LPS-induced RAW 264.7 cells. Cell migration and cell doubling assay in HaCaT cells showing the anti-proliferative potential of apigenin. Apigenin was found safe in acute dermal toxicity study. SIGNIFICANCE Apigenin was found effective against psoriasis in both in-vitro and in-vivo models suggesting apigenin as a potential candidate for the development of anti-psoriatic agent.
Collapse
Affiliation(s)
- Vipin Kumar Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debasish Sahoo
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, Uttar Pradesh 226015, India
| | - Kirti Agrahari
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, Uttar Pradesh 226015, India
| | - Ammar Khan
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debabrata Chanda
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Narayan Prasad Yadav
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
4
|
Yun YR, Choi YJ, Kim YS, Chon SY, Lee MA, Chung YB, Park SH, Min SG, Yang HC, Seo HY. Antioxidant and anti-inflammatory effects of solar salt brined kimchi. Food Sci Biotechnol 2023; 32:679-687. [PMID: 37009041 PMCID: PMC10050609 DOI: 10.1007/s10068-022-01203-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Salt is an essential ingredient in the kimchi fermentation process. Solar salt has antioxidant, anti-cancer, and anti-obesity properties. The aim of this study was to determine the antioxidant and anti-inflammatory effects of solar salt brined kimchi. Purified salt (PS), dehydrated solar salt (DSS), 1-year aged solar salt (SS1), and 3-years aged solar salt (SS3) were investigated. Anti-inflammatory effects were determined by analyzing cytotoxicity, nitric oxide (NO) production, and inflammation-related gene expression in lipopolysaccharide-treated RAW264.7 cells. Antioxidant activities of DSS, SS1, and SS3 were higher than that of PS. Solar salt significantly inhibited NO production with low cytotoxicity and decreased inflammation-related gene expression. Kimchi containing solar salt (DSSK, SS1K, and SS3K) showed higher antioxidant activity than PSK. Additionally, DSSK, SS1K, and SS3K significantly inhibited NO production and decreased the expression of inflammation-related genes. Owing to the antioxidant and anti-inflammatory effects, using solar salt in kimchi preparation could have potential health benefits.
Collapse
Affiliation(s)
- Ye-Rang Yun
- World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Yun-Jeong Choi
- World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Ye-Sol Kim
- World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Seo-Young Chon
- World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Mi-Ai Lee
- World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Young Bae Chung
- World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Sung-Hee Park
- World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Sung-Gi Min
- World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Ho-Chul Yang
- Food & Drug Analysis Division, Jeollanam-Do Institute of Health and Environment, Nong-seong-dong, Seo-gu, Gwangju, 502810 Republic of Korea
| | - Hye-Young Seo
- World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| |
Collapse
|
5
|
Cho SH, Jeong H, Park S, Shin HT, Lee HM, Kim KN. Anti-inflammatory activity of Echinosophora koreensis nakai root extract in lipopolysaccharides-stimulated RAW 264.7 cells and carrageenan-induced mouse paw edema model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115940. [PMID: 36384207 DOI: 10.1016/j.jep.2022.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Echinosophora koreensis Nakai is an endemic plant species distributed in a limited area within the Korean province of Gangwon, including the Yanggu-gun, Inje-gun, Cheorwon-gun, Chuncheon-si, and Hongcheon-gun counties. It is used in traditional medicine to treat various disorders, such as fever, skin diseases, diuresis, and neuralgia. MATERIALS AND METHODS This study demonstrated the effects of E. koreensis Nakai root extract (EKRE) on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. Cell viability was assessed through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Nitric oxide (NO) production was measured using Griess reagent. Interleukin (IL)-6 and tumor necrosis factor (TNF) levels were assessed using enzyme-linked immunosorbent assays. Inducible nitric oxide synthase (iNOS), nuclear factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) expression were assessed using Western blot analysis. To examine the effects of EKRE in vivo, it was administered orally at doses of 50 or 200 mg/kg for 3 days in mice. Edema in the paws was induced through λ-carrageenan injection and measured hourly for up to 5 h using calipers. RESULTS EKRE markedly suppressed LPS-generated NO, IL-6, and iNOS production in RAW 264.7 cells. Moreover, it suppressed the activation of the NF-κB and MAPK in LPS-stimulated cells. Furthermore, EKRE significantly inhibited carrageenan-induced edema in mouse paws. There were no significant differences in IL-6 and TNF production in paw tissue harvested from mice, but levels decreased at high EKRE concentrations (200 mg/kg). CONCLUSION The results of this study provided validation for EKRE-induced inhibition of inflammatory responses in vitro and in vivo. This research suggested that EKRE is a promising treatment for inflammatory disorders.
Collapse
Affiliation(s)
- Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | - Hoibin Jeong
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea; Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | - Hyun-Tak Shin
- Korea National Arboretum, Korea Forest Service, Pocheon, 11186, Republic of Korea
| | - Hyung-Min Lee
- Department of Forest Ecology, Yanggu County, Yanggu, 24522, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea; Department of Bio-analysis Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Immunomodulatory effects of Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124 isolated from kimchi on lipopolysaccharide-induced RAW264.7 cells and dextran sulfate sodium-induced colitis in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|