1
|
Wang F, Zhao T, Feng Y, Ji Z, Zhao Q, Meng Q, Liu B, Liu L, Chen Q, Qi J, Zhu Z, Yang C, Qin J. Identification of candidate genes and genomic prediction of soybean fatty acid components in two soybean populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:211. [PMID: 39210238 DOI: 10.1007/s00122-024-04716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Soybean, a source of plant-derived lipids, contains an array of fatty acids essential for health. A comprehensive understanding of the fatty acid profiles in soybean is crucial for enhancing soybean cultivars and augmenting their qualitative attributes. Here, 180 F10 generation recombinant inbred lines (RILs), derived from the cross-breeding of the cultivated soybean variety 'Jidou 12' and the wild soybean 'Y9,' were used as primary experimental subjects. Using inclusive composite interval mapping (ICIM), this study undertook a quantitative trait locus (QTL) analysis on five distinct fatty acid components in the RIL population from 2019 to 2021. Concurrently, a genome-wide association study (GWAS) was conducted on 290 samples from a genetically diverse natural population to scrutinize the five fatty acid components during the same timeframe, thereby aiming to identify loci closely associated with fatty acid profiles. In addition, haplotype analysis and the Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to predict candidate genes. The QTL analysis elucidated 23 stable QTLs intricately associated with the five fatty acid components, exhibiting phenotypic contribution rates ranging from 2.78% to 25.37%. In addition, GWAS of the natural population unveiled 102 significant loci associated with these fatty acid components. The haplotype analysis of the colocalized loci revealed that Glyma.06G221400 on chromosome 6 exhibited a significant correlation with stearic acid content, with Hap1 showing a markedly elevated stearic acid level compared with Hap2 and Hap3. Similarly, Glyma.12G075100 on chromosome 12 was significantly associated with the contents of oleic, linoleic, and linolenic acids, suggesting its involvement in fatty acid biosynthesis. In the natural population, candidate genes associated with the contents of palmitic and linolenic acids were predominantly from the fatty acid metabolic pathway, indicating their potential role as pivotal genes in the critical steps of fatty acid metabolism. Furthermore, genomic selection (GS) for fatty acid components was conducted using ridge regression best linear unbiased prediction based on both random single nucleotide polymorphisms (SNPs) and SNPs significantly associated with fatty acid components identified by GWAS. GS accuracy was contingent upon the SNP set used. Notably, GS efficiency was enhanced when using SNPs derived from QTL mapping analysis and GWAS compared with random SNPs, and reached a plateau when the number of SNP markers exceeded 3,000. This study thus indicates that Glyma.06G221400 and Glyma.12G075100 are genes integral to the synthesis and regulatory mechanisms of fatty acids. It provides insights into the complex biosynthesis and regulation of fatty acids, with significant implications for the directed improvement of soybean oil quality and the selection of superior soybean varieties. The SNP markers delineated in this study can be instrumental in establishing an efficacious pipeline for marker-assisted selection and GS aimed at improving soybean fatty acid components.
Collapse
Affiliation(s)
- Fengmin Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Tiantian Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Yan Feng
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zengfa Ji
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Qingsong Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Qingmin Meng
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Bingqiang Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Qiang Chen
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Jin Qi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China.
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Kim JM, Seo JS, Lee JW, Lyu JI, Ryu J, Eom SH, Ha BK, Kwon SJ. QTL mapping reveals key factors related to the isoflavone contents and agronomic traits of soybean (Glycine max). BMC PLANT BIOLOGY 2023; 23:517. [PMID: 37880577 PMCID: PMC10601131 DOI: 10.1186/s12870-023-04519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Soybean is a valuable source of edible protein and oil, as well as secondary metabolites that can be used in food products, cosmetics, and medicines. However, because soybean isoflavone content is a quantitative trait influenced by polygenes and environmental interactions, its genetic basis remains unclear. RESULTS This study was conducted to identify causal quantitative trait loci (QTLs) associated with soybean isoflavone contents. A mutant-based F2 population (190 individuals) was created by crossing the Korean cultivar Hwanggeum with low isoflavone contents (1,558 µg g-1) and the soybean mutant DB-088 with high isoflavone contents (6,393 µg g-1). A linkage map (3,049 cM) with an average chromosome length of 152 cM was constructed using the 180K AXIOM® SoyaSNP array. Thirteen QTLs related to agronomic traits were mapped to chromosomes 2, 3, 11, 13, 19, and 20, whereas 29 QTLs associated with isoflavone contents were mapped to chromosomes 1, 3, 8, 11, 14, 15, and 17. Notably, the qMGLI11, qMGNI11, qADZI11, and qTI11, which located Gm11_9877690 to Gm11_9955924 interval on chromosome 11, contributed to the high isoflavone contents and explained 11.9% to 20.1% of the phenotypic variation. This QTL region included four candidate genes, encoding β-glucosidases 13, 14, 17-1, and 17-2. We observed significant differences in the expression levels of these genes at various seed developmental stages. Candidate genes within the causal QTLs were functionally characterized based on enriched GO terms and KEGG pathways, as well as the results of a co-expression network analysis. A correlation analysis indicated that certain agronomic traits (e.g., days to flowering, days to maturity, and plant height) are positively correlated with isoflavone content. CONCLUSIONS Herein, we reported that the major QTL associated with isoflavone contents was located in the interval from Gm11_9877690 to Gm11_9955924 (78 kb) on chromosome 11. Four β-glucosidase genes were identified that may be involved in high isoflavone contents of soybean DB-088. Thus, the mutant alleles from soybean DB-088 may be useful for marker-assisted selection in developing soybean lines with high isoflavone contents and superior agronomic traits.
Collapse
Affiliation(s)
- Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong Woo Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae Il Lyu
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Seok Hyun Eom
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
3
|
Kim DG, Lyu JI, Kim JM, Seo JS, Choi HI, Jo YD, Kim SH, Eom SH, Ahn JW, Bae CH, Kwon SJ. Identification of Loci Governing Agronomic Traits and Mutation Hotspots via a GBS-Based Genome-Wide Association Study in a Soybean Mutant Diversity Pool. Int J Mol Sci 2022; 23:10441. [PMID: 36142354 PMCID: PMC9499481 DOI: 10.3390/ijms231810441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we performed a genotyping-by-sequencing analysis and a genome-wide association study of a soybean mutant diversity pool previously constructed by gamma irradiation. A GWAS was conducted to detect significant associations between 37,249 SNPs, 11 agronomic traits, and 6 phytochemical traits. In the merged data set, 66 SNPs on 13 chromosomes were highly associated (FDR p < 0.05) with the following 4 agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with the findings of earlier studies on other genetic features (e.g., natural accessions and recombinant inbred lines). Therefore, our observations suggest that the genomic changes in the mutants generated by gamma irradiation occurred at the same loci as the mutations in the natural soybean population. These findings are indicative of the existence of mutation hotspots, or the acceleration of genome evolution in response to high doses of radiation. Moreover, this study demonstrated that the integration of GBS and GWAS to investigate a mutant population derived from gamma irradiation is suitable for dissecting the molecular basis of complex traits in soybeans.
Collapse
Affiliation(s)
- Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Jae Il Lyu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Korea
| | - Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Yeong Deuk Jo
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Korea
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Chang-Hyu Bae
- Department of Life Resources, Graduate School, Sunchon National University, Suncheon 57922, Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| |
Collapse
|
4
|
Kim JM, Lyu JI, Kim DG, Hung NN, Seo JS, Ahn JW, Lim YJ, Eom SH, Ha BK, Kwon SJ. Genome wide association study to detect genetic regions related to isoflavone content in a mutant soybean population derived from radiation breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:968466. [PMID: 36061785 PMCID: PMC9433930 DOI: 10.3389/fpls.2022.968466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Isoflavones are major secondary metabolites that are exclusively produced by legumes, including soybean. Soy isoflavones play important roles in human health as well as in the plant defense system. The isoflavone content is influenced by minor-effect quantitative trait loci, which interact with polygenetic and environmental factors. It has been difficult to clarify the regulation of isoflavone biosynthesis because of its complex heritability and the influence of external factors. Here, using a genotype-by-sequencing-based genome-wide association mapping study, 189 mutant soybean genotypes (the mutant diversity pool, MDP) were genotyped on the basis of 25,646 high-quality single nucleotide polymorphisms (SNPs) with minor allele frequency of >0.01 except for missing data. All the accessions were phenotyped by determining the contents of 12 isoflavones in the soybean seeds in two consecutive years (2020 and 2021). Then, quantitative trait nucleotides (QTNs) related to isoflavone contents were identified and validated using multi-locus GWAS models. A total of 112 and 46 QTNs related to isoflavone contents were detected by multiple MLM-based models in 2020 and 2021, respectively. Of these, 12 and 5 QTNs were related to more than two types of isoflavones in 2020 and 2021, respectively. Forty-four QTNs were detected within the 441-Kb physical interval surrounding Gm05:38940662. Of them, four QTNs (Gm05:38936166, Gm05:38936167, Gm05:38940662, and Gm05:38940717) were located at Glyma.05g206900 and Glyma.05g207000, which encode glutathione S-transferase THETA 1 (GmGSTT1), as determined from previous quantitative trait loci annotations and the literature. We detected substantial differences in the transcript levels of GmGSTT1 and two other core genes (IFS1 and IFS2) in the isoflavone biosynthetic pathway between the original cultivar and its mutant. The results of this study provide new information about the factors affecting isoflavone contents in soybean seeds and will be useful for breeding soybean lines with high and stable concentrations of isoflavones.
Collapse
Affiliation(s)
- Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jae Il Lyu
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, South Korea
| | - Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Nguyen Ngoc Hung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - You Jin Lim
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin, South Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin, South Korea
| | - Bo-Keun Ha
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| |
Collapse
|
5
|
Use of Gamma Radiation for the Genetic Improvement of Underutilized Plant Varieties. PLANTS 2022; 11:plants11091161. [PMID: 35567162 PMCID: PMC9102721 DOI: 10.3390/plants11091161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022]
Abstract
Agricultural biodiversity includes many species that have biological variants (natives, ecotypes, races, morphotypes). Their use is restricted to local areas because they do not fulfill the commercial requirements; however, it is well documented that these species are a source of metabolites, proteins, enzymes, and genes. Rescuing and harnessing them through traditional genetic breeding is time-consuming and expensive. Inducing mutagenesis may be a short-time option for its genetic improvement. A review of outstanding research was carried out, in order to become familiar with gene breeding using gamma radiation and its relevance to obtain outstanding agronomic characteristics for underutilized species. An approach was made to the global panorama of the application of gamma radiation in different conventional crop species and in vitro cultivated species, in order to obtain secondary metabolites, as well as molecular tools used for mutation screening. The varied effects of gamma radiation are essentially the result of the individual responses and phenotypic plasticity of each organism. However, even implicit chance can be reduced with specific genetic breeding, environmental adaptation, or conservation objectives.
Collapse
|