1
|
Sen K, Khan MI, Paul R, Ghoshal U, Asakawa Y. Recent Advances in the Phytochemistry of Bryophytes: Distribution, Structures and Biological Activity of Bibenzyl and Bisbibenzyl Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:4173. [PMID: 38140499 PMCID: PMC10747515 DOI: 10.3390/plants12244173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Research on bryophyte phytochemistry has revealed the presence of different phytochemicals like fatty acids, terpenoids, small phenolic molecules, etc. Small phenolic molecules, i.e., bibenzyls (of two aromatic rings) and bisbibenzyls (four aromatic rings), are unique signature molecules of liverworts. The first bisbibenzyls marchantin A and riccardin A were discovered in two consecutive years, i.e., 1982 and 1983, respectively, by Asakawa and coworkers. Since then, about 70 bisbibenzyls have been reported. These molecules are characterized and identified using different spectroscopic techniques and surveyed for different bioactivity and structure-activity relations. Biochemistry is determined by the season, geography, and environment. In this review, quantitative and qualitative information on bibenzyls and bisbibenzyl compounds and their distribution in different liverworts across, geographies along withtraditional to advanced extraction methods, and characterization techniques are summarized. Also, a comprehensive account of characteristic spectra of different bisbibenzyl compounds, their subtypes, and their basic skeleton patterns are compared. A comprehensive table is provided here for the first time presenting the quantity of bibenzyls, bisbenzyls, and their derivatives found in bryophytes, mentioning the spectroscopic data and mass profiles of the compounds. The significance of these compounds in different bioactivities like antibiotic, antioxidative, antitumor, antivenomous, anti-influenza, insect antifeedant, cytotoxic, and anticancerous activities are surveyed and critically enumerated.
Collapse
Affiliation(s)
- Kakali Sen
- Department of Botany, University of Kalyani, Kalyani 741245, India (U.G.)
| | | | - Raja Paul
- Department of Botany, University of Kalyani, Kalyani 741245, India (U.G.)
| | - Utsha Ghoshal
- Department of Botany, University of Kalyani, Kalyani 741245, India (U.G.)
| | - Yoshinori Asakawa
- Institute of Pharmacognosy, Tokushima Bunri University, Tokushima 770-8514, Japan;
| |
Collapse
|
2
|
Zhu M, Gao Y, Li Y, Xie F, Zhou J, Xu L, Lv D, Zhang X, Xu Z, Dong T, Shen T, Zhang J, Lou H. Novel Diterpenoids Incorporating Rearranged Labdanes from the Chinese Liverwort Anastrophyllum joergensenii and Their Anti-inflammatory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19551-19567. [PMID: 38032113 DOI: 10.1021/acs.jafc.3c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Liverworts provide valuable ecological services to improve the sustainability of agriculture, encompassing soil health maintenance and natural pest management. Some liverworts have potential applications in medicine and as food additives. Twenty-two novel diterpenoids (anajoerins A-V), of which anajoerins B-G are rearranged labdanes featuring an unprecedented 6/5 fused ring system, were isolated from the Chinese liverwort Anastrophyllum joergensenii Schiffn. The absolute configurations of all compounds were identified based on high-resolution electrospray ionization mass spectroscopy data, NMR spectra, and ECD calculations. Plausible biogenetic pathways for unprecedented rearranged labdanes were proposed. Seven diterpenoids exhibited anti-inflammatory activity by reducing nitric oxide production in LPS-stimulated RAW264.7 murine macrophages in a dose-dependent manner with IC50s between 9.71 and 56.56 μM. All tested compounds showed no cytotoxicity at the tested concentrations. Western blot analyses of NF-κB p65 downregulation showed that anajoerin L could inhibit the NF-κB signaling pathway. Furthermore, anajoerin L also suppressed the secretion of the ConA-induced proinflammatory cytokines IFN-γ, TNF-α, and IL-6.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yinghui Gao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Feng Xie
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinchuan Zhou
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Lintao Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongxue Lv
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinyu Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zejun Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Dong
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Shen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
4
|
Ivković I, Bukvički D, Novaković M, Majstorović I, Leskovac A, Petrović S, Veljić M. Assessment of the Biological Effects of Pellia endiviifolia and its Constituents in Vitro. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Liverworts are characterized by a high content of bioactive compounds reported to show antimicrobial, anticancer, and antioxidant properties. In this study, the biological effects of the methanol extract of the liverwort Pellia endiviifolia and its constituents, bis-bibenzyls perrottetin E, 10′-hydroxyperrottetin E, and 10,10′-dihydroxyperrottetin E, were investigated using human peripheral blood cells as a model system. The assessment of the investigated compounds comprised testing their genotoxicity, apoptotic potential, and redox modulating activities. The genotoxicity testing indicated that medium (25 µM) and high concentrations (100 µM) of the investigated compounds displayed genotoxic and antiproliferative effects in human lymphocytes as revealed by significant, concentration-dependent enhancement of the micronuclei incidence and decrease in the cytokinesis-block proliferation index compared to the control ( P < .001). Analysis of leukocyte apoptosis showed a substantial potential of all investigated compounds to induce apoptosis, which was not concentration-dependent. The P endiviifolia extract and perrottetin E demonstrated considerable pro-apoptotic potential, even at the lowest concentration (1 µM) applied. Evaluation of the redox modulating effects, which comprised measuring erythrocyte catalase activity and the lymphocyte malondialdehyde level, showed that the investigated compounds did not induce oxidative stress in human peripheral blood cells ( P > .05). The observed genotoxic, antiproliferative, and proapoptotic effects of the investigated compounds make them suitable for further comprehensive studies related to their possible applications as anticancer agents.
Collapse
Affiliation(s)
- Ivana Ivković
- University of Belgrade, Institute of Botany and Botanical Garden “Jevremovac”, Belgrade, Serbia
| | - Danka Bukvički
- University of Belgrade, Institute of Botany and Botanical Garden “Jevremovac”, Belgrade, Serbia
| | - Miroslav Novaković
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
| | - Ivana Majstorović
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Andreja Leskovac
- Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sandra Petrović
- Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Veljić
- University of Belgrade, Institute of Botany and Botanical Garden “Jevremovac”, Belgrade, Serbia
| |
Collapse
|