1
|
Yurkevich OY, Samatadze TE, Zoshchuk SA, Semenov AR, Morozov AI, Selyutina IY, Amosova AV, Muravenko OV. Repeatome Analysis and Satellite DNA Chromosome Patterns in Hedysarum Species. Int J Mol Sci 2024; 25:12340. [PMID: 39596405 PMCID: PMC11595117 DOI: 10.3390/ijms252212340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The cosmopolitan genus Hedysarum L. (Fabaceae) is divided into sections Hedysarum, Stracheya, and Multicaulia. This genus includes many valuable medicinal, melliferous, and forage species. The species taxonomy and genome relationships within the sections are still unclear. We examined intra- and interspecific diversity in the section (sect.) Hedysarum based on repeatome analyses using NGS data, bioinformatic technologies, and chromosome FISH mapping of 35S rDNA, 5S rDNA, and the identified satellite DNA families (satDNAs). A comparison of repeatomes of H. alpinum, H. theinum, and H. flavescens revealed differences in their composition. However, similarity in sequences of most satDNAs indicated a close relationship between genomes within sect. Hedysarum. New effective satDNA chromosomal markers were detected, which is important for karyotype analyses within Hedysarum. Intra- and interspecific variability in the chromosomal distribution patterns of the studied markers were revealed, and species karyograms were constructed. These results provided new insight into the karyotype structures and genomic diversity within sect. Hedysarum, clarified the systematic position of H. sachalinense and H. arcticum, and confirmed the distant genomic relationships between species from sections Hedysarum and Multicaulia. Our findings are important for further comparative genome studies within the genus Hedysarum.
Collapse
Affiliation(s)
- Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Alexey R. Semenov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Alexander I. Morozov
- All-Russian Institute of Medicinal and Aromatic Plants, Federal Agency for Scientific Organizations, 7 Green St., 117216 Moscow, Russia
| | - Inessa Yu. Selyutina
- Central Siberian Botanical Garden, SB RAS, 101 Zolotodolinskaya St., 630090 Novosibirsk, Russia
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
2
|
Integration of Repeatomic and Cytogenetic Data on Satellite DNA for the Genome Analysis in the Genus Salvia (Lamiaceae). PLANTS 2022; 11:plants11172244. [PMID: 36079625 PMCID: PMC9460151 DOI: 10.3390/plants11172244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Within the complicated and controversial taxonomy of cosmopolitan genus Salvia L. (Lamiaceae) are valuable species Salvia officinalis L. and Salvia sclarea L., which are important for the pharmaceutical, ornamental horticulture, food, and perfume industries. Genome organization and chromosome structure of these essential oil species remain insufficiently studied. For the first time, the comparative repeatome analysis of S. officinalis and S. sclarea was performed using the obtained NGS data, RepeatExplorer/TAREAN pipelines and FISH-based chromosome mapping of the revealed satellite DNA families (satDNAs). In repeatomes of these species, LTR retrotransposons made up the majority of their repetitive DNA. Interspecific variations in genome abundance of Class I and Class II transposable elements, ribosomal DNA, and satellite DNA were revealed. Four (S. sclarea) and twelve (S. officinalis) putative satDNAs were identified. Based on patterns of chromosomal distribution of 45S rDNA; 5S rDNA and the revealed satDNAs, karyograms of S. officinalis and S. sclarea were constructed. Promising satDNAs which can be further used as chromosome markers to assess inter- and intraspecific chromosome variability in Salvia karyotypes were determined. The specific localization of homologous satDNA and 45S rDNA on chromosomes of the studied Salvia species confirmed their common origin, which is consistent with previously reported molecular phylogenetic data.
Collapse
|
3
|
Kirov I, Kolganova E, Dudnikov M, Yurkevich OY, Amosova AV, Muravenko OV. A Pipeline NanoTRF as a New Tool for De Novo Satellite DNA Identification in the Raw Nanopore Sequencing Reads of Plant Genomes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2103. [PMID: 36015406 PMCID: PMC9413040 DOI: 10.3390/plants11162103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
High-copy tandemly organized repeats (TRs), or satellite DNA, is an important but still enigmatic component of eukaryotic genomes. TRs comprise arrays of multi-copy and highly similar tandem repeats, which makes the elucidation of TRs a very challenging task. Oxford Nanopore sequencing data provide a valuable source of information on TR organization at the single molecule level. However, bioinformatics tools for de novo identification of TRs in raw Nanopore data have not been reported so far. We developed NanoTRF, a new python pipeline for TR repeat identification, characterization and consensus monomer sequence assembly. This new pipeline requires only a raw Nanopore read file from low-depth (<1×) genome sequencing. The program generates an informative html report and figures on TR genome abundance, monomer sequence and monomer length. In addition, NanoTRF performs annotation of transposable elements (TEs) sequences within or near satDNA arrays, and the information can be used to elucidate how TR−TE co-evolve in the genome. Moreover, we validated by FISH that the NanoTRF report is useful for the evaluation of TR chromosome organization—clustered or dispersed. Our findings showed that NanoTRF is a robust method for the de novo identification of satellite repeats in raw Nanopore data without prior read assembly. The obtained sequences can be used in many downstream analyses including genome assembly assistance and gap estimation, chromosome mapping and cytogenetic marker development.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, Moscow 127550, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Elizaveta Kolganova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, Moscow 127550, Russia
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, Moscow 127550, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
4
|
Yurkevich OY, Samatadze TE, Selyutina IY, Suprun NA, Suslina SN, Zoshchuk SA, Amosova AV, Muravenko OV. Integration of Genomic and Cytogenetic Data on Tandem DNAs for Analyzing the Genome Diversity Within the Genus Hedysarum L. (Fabaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:865958. [PMID: 35574118 PMCID: PMC9101955 DOI: 10.3389/fpls.2022.865958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The section Multicaulia is the largest clade in the genus Hedysarum L. (Fabaceae). Representatives of the sect. Multicaulia are valuable plants used for medicinal and fodder purposes. The taxonomy and phylogeny of the sect. Multicaulia are still ambiguous. To clarify the species relationships within sect. Multicaulia, we, for the first time, explored repeatomes of H. grandiflorum Pall., H. zundukii Peschkova, and H. dahuricum Turcz. using next-generation sequencing technologies and a subsequent bioinformatic analysis by RepeatExplorer/TAREAN pipelines. The comparative repeatome analysis showed that mobile elements made up 20-24% (Class I) and about 2-2.5% (Class II) of their repetitive DNAs. The amount of ribosomal DNA varied from 1 to 2.6%, and the content of satellite DNA ranged from 2.7 to 5.1%. For each species, five high confident putative tandem DNA repeats and 5-10 low confident putative DNA repeats were identified. According to BLAST, these repeats demonstrated high sequence similarity within the studied species. FISH-based mapping of 35S rDNA, 5S rDNA, and satDNAs made it possible to detect new effective molecular chromosome markers for Hedysarum species and construct the species karyograms. Comparison of the patterns of satDNA localization on chromosomes of the studied species allowed us to assess genome diversity within the sect. Multicaulia. In all studied species, we revealed intra- and interspecific variabilities in patterns of the chromosomal distribution of molecular chromosome markers. In H. gmelinii Ledeb. and H. setigerum Turcz. ex Fisch. et Meyer, similar subgenomes were detected, which confirmed the polyploid status of their genomes. Our findings demonstrated a close genomic relationship among six studied species indicating their common origin and confirmed the taxonomic status of H. setigerum as a subspecies of H. gmelinii as well as the validity of combining the sect. Multicaulia and Subacaulia into one sect. Multicaulia.
Collapse
Affiliation(s)
- Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Peoples’ Friendship University of Russia, Moscow, Russia
| | - Inessa Yu. Selyutina
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Amosova AV, Yurkevich OY, Bolsheva NL, Samatadze TE, Zoshchuk SA, Muravenko OV. Repeatome Analyses and Satellite DNA Chromosome Patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae). Genes (Basel) 2022; 13:genes13050762. [PMID: 35627148 PMCID: PMC9141916 DOI: 10.3390/genes13050762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Subpolar and polar ecotypes of Deschampsia sukatschewii (Popl.) Roshev, D. cespitosa (L.) P. Beauv, and D. antarctica E. Desv. are well adapted to stressful environmental conditions, which make them useful model plants for genetic research and breeding. For the first time, the comparative repeatome analyses of subpolar and polar D. sukatschewii, D. cespitosa, and D. antarctica was performed using RepeatExplorer/TAREAN pipelines and FISH-based chromosomal mapping of the identified satellite DNA families (satDNAs). In the studied species, mobile genetic elements of class 1 made up the majority of their repetitive DNA; interspecific variations in the total amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were revealed; 12–18 high confident and 7–9 low confident putative satDNAs were identified. According to BLAST, most D. sukatschewii satDNAs demonstrated sequence similarity with satDNAs of D. antarctica and D. cespitosa indicating their common origin. Chromosomal mapping of 45S rDNA, 5S rDNA, and satDNAs of D. sukatschewii allowed us to construct the species karyograms and detect new molecular chromosome markers important for Deschampsia species. Our findings confirmed that genomes of D. sukatschewii and D. cespitosa were more closely related compared to D. antarctica according to repeatome composition and patterns of satDNA chromosomal distribution.
Collapse
|
6
|
González ML, Chiapella JO, Urdampilleta JD. Chromosomal Differentiation of Deschampsia (Poaceae) Based on Four Satellite DNA Families. Front Genet 2021; 12:728664. [PMID: 34621294 PMCID: PMC8490763 DOI: 10.3389/fgene.2021.728664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Diverse families of satellite DNA (satDNA) were detected in heterochromatin regions of Deschampsia. This kind of repetitive DNA consists of tandem repeat sequences forming big arrays in genomes, and can contribute to lineages differentiation. The differentiation between types of satDNA is related to their sequence identity, the size and number of monomers forming the array, and their chromosomal location. In this work, four families of satDNA (D2, D3, D12, D13), previously isolated by genomic analysis, were studied on chromosomal preparations of 12 species of Deschampsia (D. airiformis, D. antarctica, D. cespitosa, D. cordillerarum, D. elongata, D. kingii, D. laxa, D. mendocina, D. parvula, D. patula, D. venustula, and Deschampsia sp) and one of Deyeuxia (D. eminens). Despite the number of satDNA loci showing interspecific variation, the general distribution pattern of each satDNA family is maintained. The four satDNA families are AT-rich and associated with DAPI + heterochromatin regions. D2, D3, and D12 have mainly subterminal distribution, while D13 is distributed in intercalary regions. Such conservation of satDNA patterns suggests a not random distribution in genomes, where the variation between species is mainly associated with the array size and the loci number. The presence of satDNA in all species studied suggests a low genetic differentiation of sequences. On the other hand, the variation of the distribution pattern of satDNA has no clear association with phylogeny. This may be related to high differential amplification and contraction of sequences between lineages, as explained by the library model.
Collapse
Affiliation(s)
- María Laura González
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Jorge Oscar Chiapella
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional Del Comahue), Bariloche, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Córdoba), Córdoba, Argentina
| |
Collapse
|