1
|
Cheng X, Wen Q, Li Y, Wang S, Fan G, Ma Z, Guo Y, Li X, Zhang H. Exploration of D-limonene as a sex pheromone for males of Bactrocera minax (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2024; 80:1868-1876. [PMID: 38041609 DOI: 10.1002/ps.7914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Bactrocera minax is a devastating pest of citrus fruits. However, there have been no effective control measures before. Few reports on the sex pheromones of B. minax are available. RESULTS In this study, nine of the volatile compounds in adult females were identified using headspace solid-phase microextraction (HS-SPME) in combination with gas chromatography-mass spectrometry (GC-MS). Among them, d-limonene, caprolactam, 2-Nitro-1H-imidazole, and creatinine could evoke antennal responses in males. Field bioassays showed that only d-limonene could lure male flies, with a relative lure rate of 78.18% in all tested samples, which was significantly higher than that of paraffin oil control, while all volatile compounds did not have any lure effective to female flies. Moreover, d-limonene was diluted with paraffin oil into differential concentrations, the lure effect on males was better at 100, 500, and 800 μL d-limonene mL-1 than pure d-limonene (1000 μL mL-1 ). The relative male lure rate of d-limonene at 100 μL mL-1 was 85.88%, which was significantly higher than that of food-baits (14.12%) on day 3. However, d-limonene was unattractive to female and male Bactrocera dorsalis and Zeugodacus tau. Further kinetic analysis showed that female adults released d-limonene around 15-day post eclosion. Electroantennography 1 results showed that 500 μL mL-1 d-limonene evoked the strongest responses to antennae of 10- to 25-day-old male flies. CONCLUSION Our results indicated that d-limonene could be a sex pheromone from female flies of B. minax, and it could be used as a male-specific sex attractant for B. minax. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqin Cheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Wen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunna Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaocheng Ma
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuancheng Guo
- Danjiangkou Citrus Experimental Station, Danjiangkou, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Lubinska-Szczygeł M, Kuczyńska-Łażewska A, Rutkowska M, Polkowska Ż, Katrich E, Gorinstein S. Determination of the Major By-Products of Citrus hystrix Peel and Their Characteristics in the Context of Utilization in the Industry. Molecules 2023; 28:molecules28062596. [PMID: 36985567 PMCID: PMC10052365 DOI: 10.3390/molecules28062596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Kaffir lime (Citrus hystrix) is a popular citrus in Southeast Asia. Despite the growing interest in the peel of the fruit, the leaves are the most frequently used part of the fruit. The aim of the study was to determine the main by-products of the peel, such as pectins, minerals, essential oil, and bioactive compounds, and to evaluate the possibility of using them in various branches of industry. In the study of the essential oil obtained by hydrodistillation performed using the TGA chromatography technique (GC-MS), sabinene (31.93%), β-pinene (26%), and limonene (19%) were selected as the most abundant volatile compounds. Nine microelements (Fe, Zn, Cu, Mn, Co, Ni, Cr, Mo, and V), four macroelements (Mg, Ca, K, and Na), and seven ballast substances (Cd, Hg, Pb, Al, V, Sr, and Pt) were also determined using the microwave plasma-atomic emission spectrometry technique (MP-AES). In the case of microelements, iron 32.72 ± 0.39 mg/kg DW (dry weight) had the highest concentration. In the case of macroelements, the calcium content was 9416 ± 34 mg/kg DW. Optimization of the pectin extraction was also performed by selecting citric acid and obtaining a yield of 7.6–17.6% for acid extraction and 9.9–28.2% for ultrasound-assisted extraction (UAE), depending on the temperature used. The obtained pectins were characterized by the degree of methylation, galacturonic acid content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, and DSC (differential scanning calorimetry) analysis. Among bioactive compounds, the contents of polyphenols (22.63 ± 2.12 mg GAE/g DW), flavonoids (2.72 ± 0.25 mg CE/g DW, vitamin C (2.43 ± 0.19 mg Asc), xantoproteins + carotenes (53.8 ± 4.24 ug), anthocyanins (24.8 ± 1.8 mg CGE/kg DW), and chlorophylls A and B (188.5 ± 8.1, 60.4 ± 3.23 µg/g DW) were evaluated. Antioxidant capacity using (cupric ion-reducing antioxidant capacity) CUPRAC and DPPH assays was also provided with the results of 76.98 ± 8.1, and 12.01 ± 1.02 µmol TE/g DW, respectively.
Collapse
Affiliation(s)
- Martyna Lubinska-Szczygeł
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Correspondence: (M.L.-S.); (Ż.P.)
| | - Anna Kuczyńska-Łażewska
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Correspondence: (M.L.-S.); (Ż.P.)
| | - Elena Katrich
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (E.K.)
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (E.K.)
| |
Collapse
|
3
|
Madayag RE, Gentallan RJP, Quiñones KJO, Bartolome MCB, Vera Cruz JRA, Borromeo TH, Endonela LE, Timog EBS. The complete chloroplast genome of ‘biasong’ ( Citrus micrantha Wester), a native species from the Southern Philippines. MITOCHONDRIAL DNA PART B 2022; 7:1992-1996. [DOI: 10.1080/23802359.2022.2144515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- R. E. Madayag
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | - R. Jr. P. Gentallan
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | - K. J. O. Quiñones
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | - M. C. B. Bartolome
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | - J. R. A. Vera Cruz
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | - T. H. Borromeo
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | - L. E. Endonela
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | - E. B. S. Timog
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, College, Laguna, Philippines
| |
Collapse
|
4
|
Utilization of Pomelo (Citrus maxima) Peel Waste into Bioactive Essential Oils: Chemical Composition and Insecticidal Properties. INSECTS 2022; 13:insects13050480. [PMID: 35621814 PMCID: PMC9146202 DOI: 10.3390/insects13050480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The disposal of agricultural waste products is an emerging concern and an alternative to this is the development of value-added products from these wastes. Here we extracted the essential oil from Citrus maxima (CMEO) and examined its larvicidal and pest control potentials. Results pointed out that CMEO can be effective biopesticides against two major insect pests of stored grains. Furthermore, CMEO had a significant larvicidal action against different mosquito species. This study provided useful information on the compositional aspects and insecticidal properties of CMEO. Abstract The wastes generated during the post-harvest handling of various agricultural commodities is rather under-utlilized. The peels of citrus fruits are often discarded as waste. Citrus peels are rich in essential oils and exhibit toxicity towards various insect species. The essential oils are also an eco-friendly option for insect pest management. The Citrus maxima peel essential oil (CMEO), a waste product, characterized it, and evaluated its potential for insect pest management. The major terpenoids present in CMEO are Limonene and α-Pinene. The CMEO displayed potentials in controlling the insect pests via contact and fumigant toxicity. Moreover, CMEO showed significant larvicidal activities against Culex tritaeniorhynchus and Aedes aegypti species of mosquitoes; however, Armigeres subalbatus was more resistant. The biological safety of the essential oil was also tested against the stored seeds, where no significant inhibition of seed germination was noticed compared to the control. Utilizing a waste product such as citrus peel for pest management can achieve the dual objective of waste utilization and eco-friendly pest management. Overall, the CMEO is therefore found to be a bioactive essential oil extracted from the wastes of pomelo (C. maxima).
Collapse
|
5
|
Potential Therapeutic Effects of Citrus hystrix DC and Its Bioactive Compounds on Metabolic Disorders. Pharmaceuticals (Basel) 2022; 15:ph15020167. [PMID: 35215280 PMCID: PMC8875002 DOI: 10.3390/ph15020167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic disorders like diabetes mellitus, hypertension, dyslipidemia, and obesity are major medical problems globally. The incidence of these disorders has increased tremendously in recent years. Studies have demonstrated that plants with antioxidant and anti-inflammatory properties have beneficial effects on these disorders. One of these plants is Citrus hystrix DC, commonly known as kaffir lime. This review aims to present updates on the progress of research regarding the use of C. hystrix in metabolic disorders. Phytochemical compounds, including β-pinene, sabinene, citronellal, and citronellol, have been detected in the plant; and its extract exhibited potential antidiabetic, antihyperlipidemic and anti-obesity activity, as well as prevention of development of hypertension. These beneficial properties may be attributable to the presence of bioactive compounds which have therapeutic potential in treating these metabolic disorders. The compounds have the potential to be developed as candidate drugs. This review will assist in validating the regulatory role of the extract and its bioactive compounds on metabolic disorders, thus expediting future research in the area.
Collapse
|
6
|
Central Composite Design, Kinetic Model, Thermodynamics, and Chemical Composition of Pomelo (Citrus Maxima (Burm.) Merr.) Essential Oil Extraction by Steam Distillation. Processes (Basel) 2021. [DOI: 10.3390/pr9112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pomelo peel-derived essential oils have been gaining popularity due to greater demand for stress relief therapy or hair care therapy. In this study, we first performed optimization of parameters in the pomelo essential oil extraction process on a pilot scale to gain better insights for application in larger scale production. Then extraction kinetics, activation energy, thermodynamics, and essential oil quality during the extraction process were investigated during the steam distillation process. Three experimental conditions including material mass, steam flow rate, and extraction time were taken into consideration in response surface methodology (RSM) optimization. The optimal conditions were found as follows: sample weight of 422 g for one distillation batch, steam flow rate of 2.16 mL/min and extraction time of 106 min with the coefficient of determination R2 of 0.9812. The nonlinear kinetics demonstrated the compatibility of the kinetic model with simultaneous washing and unhindered diffusion with a washing rate constant of 0.1515 min−1 and a diffusion rate constant of 0.0236 min−1. The activation energy of the washing and diffusion process was 167.43 kJ.mol−1 and 96.25 kJ.mol−1, respectively. The thermodynamic value obtained at the ΔG° value was −35.02 kJ.mol−1. The quality of pomelo peel essential oil obtained by steam distillation was characterized by its high limonene content (96.996%), determined by GC-MS.
Collapse
|