1
|
Yildirim Akatin M, Ayaz FA, Boyraci GM, Er Kemal M, Batan N, Colak N. An evaluation of the antioxidant potential and in vitro enzyme inhibition profile of selected bryophytes from Northeast Anatolia (Türkiye). J Biomol Struct Dyn 2024:1-13. [PMID: 38327145 DOI: 10.1080/07391102.2024.2313155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Interest in the use of bryophytes in pharmaceutical, cosmetic, and food industrial applications is growing worldwide due to their secondary metabolites. In this study, n-hexane crude extracts and further fractions (aqueous, ethyl acetate and n-butanol) of aqueous ethanol (80:20, ethanol:H2O, v/v) were obtained from five different bryophytes (Pellia epiphylla, Conocephalum conicum, Porella platyphylla, Plagiomnium cuspidatum and Mnium spinulosum) collected from Trabzon, Türkiye. The total phenolic compound (TPC) content, antioxidant capacity (AC) and enzyme inhibition activity (acetylcholine esterase, butyrylcholine esterase, tyrosinase, α-amylase and α-glucosidase) of the extracts and fractions were species-specific and varied significantly between the crude extracts and fractions. Among the different bryophytes, Porella platyphylla and Pellia epiphylla in n-butanol and Plagiomnium cuspidatum and Mnium spinulosum in ethyl acetate fraction exhibited the highest TPC contents and AC values. The contents of phenolic acids liberated in free, ester and glycoside forms were also species-specific. p-Hydroxybenzoic acid (p-HBA) in free form in P. cuspidatum and P. platyphylla, p-coumaric acid (p-CoA) in ester form and m-hydroxybenzoic acid (m-HBA) in glycoside form in M. spinulosum were the major phenolic acids in the bryophytes. The n-hexane extracts of the bryophytes, in particular M. spinulosum, had IC50 values almost 100 times lower than acarbose. This suggests that M. spinulosum in particular may represent a possible candidate for the production of new antidiabetic agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Faik Ahmet Ayaz
- Faculty of Science, Department of Biology, Karadeniz Technical University, Trabzon, Türkiye
| | | | - Mehtap Er Kemal
- Macka Vocational School, Karadeniz Technical University, Trabzon, Türkiye
| | - Nevzat Batan
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Türkiye
| | - Nesrin Colak
- Faculty of Science, Department of Biology, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
2
|
Nutho B, Tungmunnithum D. Exploring Major Flavonoid Phytochemicals from Nelumbo nucifera Gaertn. as Potential Skin Anti-Aging Agents: In Silico and In Vitro Evaluations. Int J Mol Sci 2023; 24:16571. [PMID: 38068894 PMCID: PMC10706394 DOI: 10.3390/ijms242316571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Nelumbo nucifera Gaertn., an aquatic medicinal plant (Nelumbonaceae family), has a history of use in traditional medicine across various regions. Our previous study demonstrated the skin anti-aging potential of its stamen ethanolic extract by effectively inhibiting collagenase and tyrosinase enzymes. While the major constituents of this extract are well documented, there is a lack of research on the individual compounds' abilities to inhibit skin aging enzymes. Therefore, this study aimed to evaluate the anti-aging potential of the primary flavonoids found in N. nucifera using both in silico and in vitro approaches. Our initial step involved molecular docking to identify compounds with the potential to inhibit collagenase, elastase, and tyrosinase. Among the seven flavonoids studied, kaempferol-3-O-robinobioside (Kae-3-Rob) emerged as the most promising candidate, exhibiting the highest docking scores for three skin aging-related enzymes. Subsequent enzyme-based inhibition assays confirmed that Kae-3-Rob displayed robust inhibitory activity against collagenase (58.24 ± 8.27%), elastase (26.29 ± 7.16%), and tyrosinase (69.84 ± 6.07%). Furthermore, we conducted extensive 200-ns molecular dynamics (MD) simulations, revealing the stability of the complexes formed between Kae-3-Rob and each enzyme along the MD simulation time. MM/PBSA-based binding free energy calculations indicated the considerably stronger binding affinity of Kae-3-Rob for collagenase and tyrosinase compared to elastase, which was related to the greater percentage of hydrogen bond occupations. These computational findings were consistent with the relatively high inhibitory activity of Kae-3-Rob against collagenase and tyrosinase observed in our in vitro experiment. In conclusion, the results obtained from this comprehensive study suggest that Kae-3-Rob, a key flavonoid from N. nucifera, holds significant potential as a source of bioactive compounds for anti-aging cosmeceutical and other phytopharmaceutical application.
Collapse
Affiliation(s)
- Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Zych M, Urbisz K, Kimsa-Dudek M, Kamionka M, Dudek S, Raczak BK, Wacławek S, Chmura D, Kaczmarczyk-Żebrowska I, Stebel A. Effects of Water-Ethanol Extracts from Four Sphagnum Species on Gene Expression of Selected Enzymes in Normal Human Dermal Fibroblasts and Their Antioxidant Properties. Pharmaceuticals (Basel) 2023; 16:1076. [PMID: 37630991 PMCID: PMC10458669 DOI: 10.3390/ph16081076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mosses (Bryophyta), particularly species of the genus Sphagnum, which have been used for centuries for the treatment of skin diseases and damage, are still not explored enough in terms of their use in cosmetics. The purpose of this study was to determine the antioxidant properties of water-ethanol extracts from four selected species of the genus Sphagnum (S. girgenshonii Russow, S. magellanicum Brid., S. palustre L., and S. squarrosum Crome) and their impact on the expression of genes encoding key enzymes for the functioning of the skin. In this study, the effects of Sphagnum extracts on the expression of genes encoding tyrosinase, collagenase, elastase, hyaluronidase and hyaluronic acid synthase in human dermal fibroblasts were determined for the first time in vitro. The extracts inhibited tyrosinase gene expression and showed antioxidant activity. The experiment showed an increase in the expression of some genes encoding collagenase (MMP1) or hyaluronidase (HYAL2, HYAL3 and HYAL4) and a decrease in the hyaluronan synthase (HAS1, HAS2 and HAS3) genes expression by the tested extracts. The obtained results suggest that using extracts from the tested Sphagnum species in anti-aging cosmetics does not seem beneficial. Further studies are needed to clarify their impact on the skin.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Katarzyna Urbisz
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Maria Kamionka
- Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (M.K.); (A.S.)
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Barbara Klaudia Raczak
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec, Czech Republic; (B.K.R.)
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec (TUL), 46117 Liberec, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec, Czech Republic; (B.K.R.)
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec (TUL), 46117 Liberec, Czech Republic
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland;
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Adam Stebel
- Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (M.K.); (A.S.)
| |
Collapse
|
4
|
CHORFI Z, AGGOUN D, HOUCHI S, MESSASMA Z, El-MAKSOUD MSA, FERNÁNDEZ-GARCĨA M, LÓPEZ D, BENSOUICI C, OURARI A, OUENNOUGHI Y. Interaction of a Novel Inorganic Nickel Complex with Tyrosinase as Potential Inhibitor: Synthesis, Spectroscopic, DFT, NBO, Docking and ADMET Properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
A Medicinal Halophyte Ipomoea pes-caprae (Linn.) R. Br.: A Review of Its Botany, Traditional Uses, Phytochemistry, and Bioactivity. Mar Drugs 2022; 20:md20050329. [PMID: 35621980 PMCID: PMC9144928 DOI: 10.3390/md20050329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Ipomoea pes-caprae (Linn.) R. Br. (Convolvulaceae) is a halophytic plant that favorably grows in tropical and subtropical countries in Asia, America, Africa, and Australia. Even though this plant is considered a pan-tropical plant, I. pes-caprae has been found to occur in inland habitats and coasts of wider areas, such as Spain, Anguilla, South Africa, and Marshall Island, either through a purposeful introduction, accidentally by dispersal, or by spreading due to climate change. The plant parts are used in traditional medicine for treating a wide range of diseases, such as inflammation, gastrointestinal disorders, pain, and hypertension. Previous phytochemical analyses of the plant have revealed pharmacologically active components, such as alkaloids, glycosides, steroids, terpenoids, and flavonoids. These phytoconstituents are responsible for the wide range of biological activities possessed by I. pes-caprae plant parts and extracts. This review arranges the previous reports on the botany, distribution, traditional uses, chemical constituents, and biological activities of I. pes-caprae to facilitate further studies that would lead to the discovery of novel bioactive natural products from this halophyte.
Collapse
|
6
|
Anti-Inflammatory Activity of Bryophytes Extracts in LPS-Stimulated RAW264.7 Murine Macrophages. Molecules 2022; 27:molecules27061940. [PMID: 35335304 PMCID: PMC8953629 DOI: 10.3390/molecules27061940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023] Open
Abstract
Bryophytes produce rare and bioactive compounds with a broad range of therapeutic potential, and many species are reported in ethnomedicinal uses. However, only a few studies have investigated their potential as natural anti-inflammatory drug candidate compounds. The present study investigates the anti-inflammatory effects of thirty-two species of bryophytes, including mosses and liverworts, on Raw 264.7 murine macrophages stimulated with lipopolysaccharide (LPS) or recombinant human peroxiredoxin (hPrx1). The 70% ethanol extracts of bryophytes were screened for their potential to reduce the production of nitric oxide (NO), an important pro-inflammatory mediator. Among the analyzed extracts, two moss species significantly inhibited LPS-induced NO production without cytotoxic effects. The bioactive extracts of Dicranum majus and Thuidium delicatulum inhibited NO production in a concentration-dependent manner with IC50 values of 1.04 and 1.54 µg/mL, respectively. The crude 70% ethanol and ethyl acetate extracts were then partitioned with different solvents in increasing order of polarity (n-hexane, diethyl ether, chloroform, ethyl acetate, and n-butanol). The fractions were screened for their inhibitory effects on NO production stimulated with LPS at 1 ng/mL or 10 ng/mL. The NO production levels were significantly affected by the fractions of decreasing polarity such as n-hexane and diethyl ether ones. Therefore, the potential of these extracts to inhibit the LPS-induced NO pathway suggests their effective properties in attenuating inflammation and could represent a perspective for the development of innovative therapeutic agents.
Collapse
|