1
|
Fatemifard SZ, Masoumiasl A, Rezaei R, Fazeli-Nasab B, Salehi-Sardoei A, Ghorbanpour M. Association between molecular markers and resistance to bacterial blight using binary logistic analysis. BMC PLANT BIOLOGY 2024; 24:670. [PMID: 39004723 PMCID: PMC11247743 DOI: 10.1186/s12870-024-05381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
The most effective strategy for managing wheat bacterial blight caused by Pseudomonas syringae pv. syringae is believed to be the use of resistant cultivars. Researching the correlation between molecular markers and stress resistance can expedite the plant breeding process. The current study aims to evaluate the response of 27 bread wheat cultivars to bacterial blight disease in order to identify resistant and susceptible cultivars and to pinpoint ISSR molecular markers associated with bacterial blight resistance genes. ISSR markers are recommended for assessing a plant's disease resistance. This experiment is focused on identifying ISSR molecular markers linked to bacterial blight resistance. After applying the bacterial solution to the leaves, we performed sampling to determine the infection percentage in the leaves at different intervals (7, 14, and 18 days after spraying). In most cultivars, the average leaf infection percentage decreased 18 days after spraying on young leaves. However, in some cultivars such as Niknegad, Darab2, and Zarin, leaf infection increased in older leaves and reached up to 100% necrosis. In our study, 12 ISSR primers generated a total of 170 bands, with 156 being polymorphic. The primers F10 and F5 showed the highest polymorphism, while the F7 primer exhibited the lowest polymorphism. Cluster analysis grouped these cultivars into four categories. The resistant group included Qods, Omid, and Atrak cultivars, while the semi-resistant and susceptible groups comprised the rest of the cultivars. Through binary logistic analysis, we identified three Super oxide dismutase-related genes that contribute to plant resistance to bacterial blight. These genes were linked to the F3, F5, and F12 primers in regions I (1500 bp), T (1000 bp), and G (850 bp), respectively. We also identified seven susceptibility-associated genes. Atrak, Omid, and Qods cultivars exhibited resistance against bacterial blight, and three genes associated with this resistance were linked to the F3, F5, and F12 primers. These markers can be used for screening or transferring tolerance to other wheat cultivars in breeding programs.
Collapse
Affiliation(s)
| | - Asad Masoumiasl
- Plant Breeding Department, Agriculture Faculty, Yasouj University, Yasouj, Iran.
| | - Rasool Rezaei
- Plant Protection Department, Agriculture Faculty, Yasouj University, Yasouj, Iran
| | - Bahman Fazeli-Nasab
- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran
| | - Ali Salehi-Sardoei
- Crop and Horticultural Science Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
2
|
Alzahrani OR, Alshehri MA, Alasmari A, Ibrahim SD, Oyouni AA, Siddiqui ZH. Evaluation of genetic diversity among Saudi Arabian and Egyptian cultivars of alfalfa ( Medicago sativa L.) using ISSR and SCoT markers. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2194187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Othman R. Alzahrani
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - M. Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - A. Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - S. D. Ibrahim
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Atif A. Oyouni
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Zahid H. Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Mathias-Ramwell M, Pavez V, Meneses M, Fernández F, Valdés A, Lobos I, Silva M, Saldaña R, Hinrichsen P. Phenotypic and genetic characterization of an Avena sativa L. germplasm collection of diverse origin: implications for food-oat breeding in Chile. FRONTIERS IN PLANT SCIENCE 2023; 14:1298591. [PMID: 38179484 PMCID: PMC10764548 DOI: 10.3389/fpls.2023.1298591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Oats are known for their nutritional value and also for their beneficial properties on human health, such as the reduction of cholesterol levels and risk of coronary heart disease; they are an important export product for Chile. During the last decade (2010-2022) over 90% of the oat cultivated area in Chile has been covered with Avena sativa L. cv. Supernova INIA. This lack of genetic diversity in a context of climate change could limit the long-term possibility of growing oats in Chile. The present study is a phenotypic and genetic analysis of 132 oat cultivars and pure lines of diverse origin that can be considered as potential breeding material. The germplasm was evaluated for 28 traits and analyzed with 14 SSR markers. The effects of genotypes on phenotype were significant over all traits (P ≤ 0.05). Most traits exhibited moderate to high broad-sense heritability with exceptions such as yield (H2 = 0.27) and hulls staining (H2 = 0.32). Significant undesirable correlations between traits were generally of small biological importance, which is auspicious for achieving breeding objectives. Some of the heritability data and correlations provided here have not been previously reported. The overall phenotypic diversity was high (H' = 0.68 ± 0.18). The germplasm was grouped into three phenotypic clusters, differing in their qualities for breeding. Twenty-six genotypes outperforming Supernova INIA were identified for breeding of conventional food-oats. The genetic diversity of the germplasm was moderate on average (He = 0.58 ± 0.03), varying between 0.32 (AM22) and 0.77 (AME178). Two genetic subpopulations supported by the Structure algorithm exhibited a genetic distance of 0.24, showing low divergence of the germplasm. The diversity and phenotypic values found in this collection of oat genotypes are promising with respect to obtaining genetic gain in the short term in breeding programs. However, the similar genetic diversity, higher phenotypic diversity, and better phenotypic performance of the germplasm created in Chile compared to foreign germplasm suggest that germplasm harboring new genetic diversity will be key to favor yield and quality in new oat cultivars in the long term.
Collapse
Affiliation(s)
- Mónica Mathias-Ramwell
- Programa de mejoramiento genético de avena, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación Carillanca, Temuco, Chile
| | - Valentina Pavez
- Laboratorio de Análisis Genético, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación La Platina, Santiago, Chile
| | - Marco Meneses
- Laboratorio de Análisis Genético, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación La Platina, Santiago, Chile
| | - Feledino Fernández
- Programa de mejoramiento genético de avena, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación Carillanca, Temuco, Chile
| | - Adriana Valdés
- Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Iris Lobos
- Laboratorio de Espectroscopía Infrarrojo Cercano, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Remehue, Osorno, Chile
| | - Mariela Silva
- Laboratorio de Espectroscopía Infrarrojo Cercano, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Remehue, Osorno, Chile
| | - Rodolfo Saldaña
- Laboratorio de Nutrición Animal y Medio Ambiente, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Remehue, Osorno, Chile
| | - Patricio Hinrichsen
- Laboratorio de Análisis Genético, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación La Platina, Santiago, Chile
| |
Collapse
|
4
|
Andreev IO, Parnikoza IY, Konvalyuk II, Metcheva R, Kozeretska IA, Kunakh VA. Genetic divergence of Deschampsia antarctica (Poaceae) population groups in the maritime Antarctic. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We used inter-simple sequence repeats and inter-retrotransposon amplified polymorphism markers to assess genetic variation in Deschampsia antarctica populations in the context of its uneven distribution in the northern and central maritime Antarctic. Genetic diversity and population structure and differentiation were assessed in nine populations from geographically isolated population groups of D. antarctica, including the South Shetland Islands, Anvers Island and the Argentine Islands regions. In total, 265 amplified DNA fragments were scored, of which 220 (83.0%) were polymorphic. The total sample showed low genetic diversity (unbiased expected heterozygosity = 0.081 and Shannon diversity index = 0.115) and high population differentiation (molecular variance among populations = 0.659). We also found a trend toward a decrease in genetic diversity and an increase in population differentiation toward the southern edge of the species range. Principal coordinates analysis of polymerase chain reaction data and Bayesian population structure analysis showed three main clusters, which included plants originating from three spatially isolated population groups. The unweighted pair group method with arithmetic mean clustering of populations based on Nei’s genetic distances was mainly in agreement with this pattern. Testing of isolation by distance using the Mantel test demonstrated a significant correlation between genetic and ln-transformed geographical distance (r = 0.703). The data obtained indicate that the geographically isolated D. antarctica populations in the maritime Antarctic might form genetic clusters within the total range.
Collapse
Affiliation(s)
- Igor O Andreev
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ivan Yu Parnikoza
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Antarctic Scientific Centre of Ukraine, Kyiv, Ukraine
| | - Iryna I Konvalyuk
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | - Viktor A Kunakh
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|