1
|
Tran Huynh QD, Hsu SJ, Duong TLT, Liu HK, Liu TW, Chu MH, Wang YH, Nguyen DK, Phan TTT, Tran NKH, Vo TH, Hsi HY, Yeh TW, Lee CK. New Hydrogenated Phenanthrene Glycosides from the Edible Vegetable Elatostema tenuicaudatum W.T.Wang with DPP-IV Inhibitory and Hepatoprotective Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1273-1292. [PMID: 39761081 PMCID: PMC11741115 DOI: 10.1021/acs.jafc.4c08713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Based on molecular networking-guided isolation, 15 previously undescribed hydrogenated phenanthrene glycosides, including eight hexahydro-phenanthrenone glycosides, four tetrahydro-phenanthrenone glycosides, one dihydro-phenanthrenol glycoside, two dimers, and two known dihydrophenanthrene glycosides, were isolated from Elatostema tenuicaudatum W.T.Wang, a popular regional edible vegetable at the northwest region of Vietnam. Their chemical structures were determined using extensive spectroscopic data: NMR and ECD calculations. Notably, the crude extract, along with compounds 5, 6, 8, and 14, demonstrated dipeptidyl peptidase IV inhibitory activity with IC50 values of 220.5 ± 39.6 μg/mL, 141.7 ± 15.6, 151.2 ± 11.8, 107.9 ± 19.6, and 71.9 ± 8.9 μM, respectively. Molecular docking indicates compound 14 possesses the highest binding affinity with DPP-IV. Besides, compounds 1, 9, 11, and 14 exhibited significant hepatoprotective effects in acetaminophen-induced hepatotoxicity in HepG2. These findings suggested that E. tenuicaudatum can serve as a beneficial vegetable for individuals at risk of diabetes and chronic liver disease.
Collapse
Affiliation(s)
- Quoc-Dung Tran Huynh
- Ph.D.
Program in Clinical Drug Development of Herbal Medicine, College of
Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Institute
of Pharmaceutical Education and Research, Binh Duong University, Thu Dau
Mot 820000, Binh Duong, Vietnam
| | - Su-Jung Hsu
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 11042, Taiwan
| | - Truc-Ly Thi Duong
- Faculty
of Traditional medicine, Can Tho University
of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Hui-Kang Liu
- Ph.D.
Program in Clinical Drug Development of Herbal Medicine, College of
Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- National
Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Ta-Wei Liu
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 11042, Taiwan
| | - Man-Hsiu Chu
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 11042, Taiwan
| | - Yun-Han Wang
- Ph.D.
Program in Clinical Drug Development of Herbal Medicine, College of
Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Dang-Khoa Nguyen
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 11042, Taiwan
- Faculty of
Pharmacy, Ton Duc Thang University, Ho Chi Minh 700000, Vietnam
| | - Thuy-Tien Thi Phan
- Institute
of Pharmaceutical Education and Research, Binh Duong University, Thu Dau
Mot 820000, Binh Duong, Vietnam
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
| | - Nguyen-Khanh Huynh Tran
- University
of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Thanh-Hoa Vo
- University
of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
- Center
for Discovery and Development of Healthcare Product, Vietnam National University Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Hsiao-Yang Hsi
- Institute
of Fisheries Science, National Taiwan University, Taipei 106, Taiwan
| | - Tz-Wei Yeh
- Institute
of Fisheries Science, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Kuo Lee
- Ph.D.
Program in Clinical Drug Development of Herbal Medicine, College of
Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 11042, Taiwan
- Graduate
Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11042, Taiwan
- Department
of Chemistry, Chung Yuan Christian University, Zhongli District, Taoyuan 32023, Taiwan
| |
Collapse
|
2
|
Zheng X, Deng S, Li Y, Luo Z, Gan Z, Zheng Z, Xu R, Xiao S, Cai Y, Meng J, Li L, Li C, Xue X, Dai W, Qin S, Wang M, Zeng K, Xiao Z, Xia L. Targeting m 6A demethylase FTO to heal diabetic wounds with ROS-scavenging nanocolloidal hydrogels. Biomaterials 2024; 317:123065. [PMID: 39756272 DOI: 10.1016/j.biomaterials.2024.123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Chronic diabetic wounds are a prevalent and severe complication of diabetes, contributing to higher rates of limb amputations and mortality. N6-methyladenosine (m6A) is a common RNA modification that has been shown to regulate tissue repair and regeneration. However, whether targeting m6A could effectively improve chronic diabetic wound healing remains largely unknown. Here, we found a significant reduction in mRNA m6A methylation levels within human diabetic foot ulcers, and the expression level of fat mass and obesity-associated protein (FTO) was significantly increased. We identified that m6A modifies the RNA of matrix Metalloproteinase 9 (MMP9), a key factor in diabetic wound healing, to regulate its expression. Importantly, we developed a ROS-scavenging nanocolloidal hydrogel loaded with an FTO inhibitor to increase the m6A level of MMP9 RNA in wounds. The hydrogel can effectively accelerate wound healing and skin appendage regeneration in streptozotocin-induced type I diabetic rats at day 14 (approximately 98 % compared to 76.98 % in the control group) and type II diabetic db/db mice at day 20 (approximately 93 % compared to 60 % in the control group). Overall, our findings indicate that targeting m6A with ROS-scavenging hydrogel loaded with FTO inhibitor may be an effective therapeutic strategy for diabetic wound healing.
Collapse
Affiliation(s)
- Xinyao Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Shaohui Deng
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, 523018, PR China
| | - Yuan Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhipeng Luo
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Zhaoping Zheng
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rui Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Shan Xiao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuxiong Cai
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jianfu Meng
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiaowen Xue
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei Dai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Si Qin
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
| | - Mengying Wang
- Department of Biological Products, Chongqing Institute for Food and Drug Control, Chongqing, 401121, PR China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
3
|
Ismail S, Chandel TI, Ramakrishnan J, Khan RH, Poomani K, Devarajan N. Phytochemical profiling, human insulin stability and alpha glucosidase inhibition of Gymnema latifolium leaves aqueous extract: Exploring through experimental and in silico approach. Comput Biol Chem 2023; 107:107964. [PMID: 37820470 DOI: 10.1016/j.compbiolchem.2023.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
Diabetes mellitus Type 2 (DM2T) is a rapidly expanding metabolic endocrine disorder worldwide. It is caused due to inadequate insulin secretion by pancreatic beta cells as well as development of insulin resistance. This study aimed to investigate the anti-α-glucosidase, insulin stabilization effect, and non-cytotoxic nature of Gymnema latifolium leaf aqueous extract (GLAE). FTIR analysis revealed the functional groups of compounds present in GLAE. Through LC/ESI-MS/MS analysis, about 12 compounds which belongs to different classes, triterpene glycosides, flavonoids, phenolics, stilbene glycosides and chlorophenolic glycosides were identified. GLAE showed in vitro antioxidant activity. GLAE stabilized insulin by increasing its α-helical content. GLAE inhibited the mammalian α-glucosidase (IC50 = 144 μg/mL) activity through competitive mode (Ki = 61.30 µg/mL). GLAE did not affect the viability of normal cell line (Vero cell line) which shows its non-toxic nature. Molecular docking of phytocompounds identified in GLAE was done with human α-glucosidase and insulin. The top 2 compounds [Gymnema saponin V (GSV) and quercetin 3-(2-galloylglucoside) (QGG) with α-glucosidase; GSV and Z)-resveratrol 3,4'-diglucoside (RDG) with human insulin] with low binding free energy were subjected to 100 ns molecular dynamics simulation to ascertain the stable binding of ligand with protein. The MM/GBSA analysis revealed binding free energy of GSV/α-glucosidase and QGG /α-glucosidase to be - 20.9935 and, - 30.9461 kcal/mol, respectively. Altogether GLAE is valuable source of anti-α-glucosidase inhibitors and insulin stabilizing compounds, suggesting potential lead for further exploration as complementary medicine against DM2T.
Collapse
Affiliation(s)
- Shahanaj Ismail
- Natural Drug Research laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu 636011, India
| | - Tajalli Ilm Chandel
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pardesh, India
| | - Jaganathan Ramakrishnan
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, Tamil Nadu 636011, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pardesh, India
| | - Kumaradhas Poomani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, Tamil Nadu 636011, India
| | - Natarajan Devarajan
- Natural Drug Research laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu 636011, India.
| |
Collapse
|
4
|
Nur S, Setiawan H, Hanafi M, Elya B. Pharmacognostical and Phytochemical Studies and Biological Activity of Curculigo latifolia Plant Organs for Natural Skin-Whitening Compound Candidate. ScientificWorldJournal 2023; 2023:5785259. [PMID: 37829602 PMCID: PMC10567512 DOI: 10.1155/2023/5785259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Curculigo latifolia (family Amaryllidaceae) is used empirically for medicinal purposes. It is distributed throughout Asian countries, especially Indonesia. This study aimed at standardizing the C. latifolia plant, analyzing its phytochemical profile, and evaluating its pharmacological effects. The powder from each organ (root, stem, and leaves) was standardized organoleptically and microscopically. Samples were extracted by graded maceration using hexane, ethyl acetate, and ethanol. The extracts were determined for total phenolic content (TPC) and total flavonoid content (TFC). Antioxidant (radical scavenging and metal ion reduction) and antityrosinase activities were determined by spectrophotometric methods. Extracts were analysed for phytochemical profiles by LC-ESI-MS. The highest TPC and TFC were found in the ethanolic extract of the root organ (68.63 ± 2.97 mg GAE/g) and the ethyl acetate extract of the stem (14.33 ± 0.71 mg QE/g extract). High antioxidant activities were found in the ethanolic root extract (20.42 ± 0.33 µg/mL) and ethanolic stem extract (45.65 ± 0.77 µg/mL) by DPPH• and NO• assays, respectively. The ion reduction activity (by CUPRAC assay) was most significant in the ethyl acetate stem extract (390.42 ± 14.49 µmol GAEAC/g extract). Ethanolic root extract was the most active in inhibiting tyrosinase (IC50 value of 108.5 µg/mL). The correlation matrix between TPC and antioxidant activities showed a moderate to robust correlation, whereas the TPC and antityrosinase activity showed a robust correlation. The TFC and antioxidant or antityrosinase activities showed a weak to moderate correlation. The LC-ESI-MS data identified major phenols in the active extracts, including methyl 3-hydroxy-4-methoxy-benzoate, quercetin, 4-O-caffeoylquinic acid-1, and curculigoside. Overall, this study suggests that extracts from the C. latifolia plant offer potent antioxidant and antityrosinase activities, allowing them to be used as natural antioxidants and candidates for skin-lightening compounds.
Collapse
Affiliation(s)
- Syamsu Nur
- Department of Phytochemistry and Pharmacognosy, Faculty of Pharmacy, University of Indonesia, Depok 16424, Indonesia
- Department of Pharmaceutical Chemistry, Almarisah Madani University, Makassar 90245, Indonesia
| | - Heri Setiawan
- Department of Pharmacology, Faculty of Pharmacy, University of Indonesia, Depok 16424, Indonesia
| | - Muhammad Hanafi
- Indonesian Institute of Sciences (National Research and Innovation Agency (BRIN)), Jakarta 15314, Indonesia
- Department of Phytochemistry, Faculty of Pharmacy, Pancasila University, South Jakarta 12640, Indonesia
| | - Berna Elya
- Department of Phytochemistry and Pharmacognosy, Faculty of Pharmacy, University of Indonesia, Depok 16424, Indonesia
| |
Collapse
|
5
|
Kim JG, Le TPL, Han JS, Cho YB, Lee D, Lee MK, Hwang BY. Molecular networking-assisted isolation of chlorophenolic glycosides from the rhizomes of Curculigo orchioides and their inhibitory effect on α-glucosidase. PHYTOCHEMISTRY 2023; 214:113820. [PMID: 37562563 DOI: 10.1016/j.phytochem.2023.113820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Molecular networking analysis and in silico tools, such as Network Annotation Propagation (NAP) and MolNetEnhancer, were applied to explore bioactive constituents present in the ethyl acetate-soluble fraction of the rhizomes of Curculigo orchioides. Among the molecular networks, the most abundant cluster was classified as a phenolic glycoside using the ClassyFire module of MolNetEnhancer. Further, the major node in this cluster was accurately predicted as curculigine A using the in silico fragment analysis tool, NAP. Six undescribed chlorophenolic glycosides (1-6) and 11 known phenolic glycosides were isolated, using molecular networking-assisted isolation methods, and their structures were elucidated using 1D, 2D-NMR and HRESIMS. In particular, the structures of the isolated chlorophenolic glycosides, which have non-protonated aromatic rings, were determined using various NMR experiments, such as 1D-selective NOE, ROESY, and LR-HMBC, and acid hydrolysis. All isolated compounds were examined to determine their inhibitory effects on α-glucosidase and compounds 3, 8, 10, 11, 13, 14, and 16 revealed the IC50 values ranging from 19.6 to 35.5 μM. Their structure-activity relationships were also evaluated based on the analysis of their inhibitory effects and performance of molecular docking simulations.
Collapse
Affiliation(s)
- Jun Gu Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, South Korea
| | - Thi Phuong Linh Le
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jae Sang Han
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, South Korea
| | - Yong Beom Cho
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, South Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, South Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, South Korea.
| |
Collapse
|
6
|
Mu SC, Xue DF, Qin XM, Du GH, Zhou YZ. Exploring the Mechanism of Arctium Lappa L. Leaves in the Treatment of Alzheimer's Disease Based on Chemical Profile, Network Pharmacology and Molecular Docking. Adv Biol (Weinh) 2023; 7:e2300084. [PMID: 37382195 DOI: 10.1002/adbi.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Indexed: 06/30/2023]
Abstract
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, which urgently needs more effective treatment strategies. Arctium lappa L. leaf (burdock leaf) performs wide pharmacological activities, increasing evidence hinted that burdock leaves can ameliorate AD. This research aims to explore the bioactive ingredients and mechanisms of burdock leaves against AD by performing chemical profiles, network pharmacology, and molecular docking. 61 components are identified by liquid chromatography equipped with mass spectrometry. 792 targets of ingredients and 1661 AD-related genes are retrieved from public databases. Ten critical ingredients are identified from the topology analysis of the compound-target network. CytoNCA, AlzData database, and Aging Atlas database contribute to the foundation of 36 potential targets and four clinically significant targets (STAT3, RELA, MAPK8, and AR). The gene ontology (GO) analysis manifests that the included processes are close to the pathogenesis of AD. PI3K-Akt signaling pathway and AGE-RAGE signaling pathway may be important therapeutic mechanisms. Molecular docking results imply that network pharmacology results are reliable. Furthermore, the clinical meanings of core targets are also evaluated with the Gene Expression Omnibus (GEO) database. This research will provide research direction for the application of burdock leaves in the treatment of AD.
Collapse
Affiliation(s)
- Shou-Chen Mu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
| | - Deng-Feng Xue
- Shanxi Province Cancer Hospital Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences Cancer Hospital Affiliated to Shanxi Medicial University, No.3 Zhigongxinjie Road, Taiyuan, 030013, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No.92 Wucheng Road, Taiyuan, 030006, China
| |
Collapse
|
7
|
Kim JG, Le TPL, Han JS, Cho YB, Lee D, Lee MK, Hwang BY. Molecular Networking-Guided Isolation of Cycloartane-type Triterpenoids from Curculigo orchioides and Their Inhibitory Effect on Nitric Oxide Production. ACS OMEGA 2022; 7:26853-26862. [PMID: 35936480 PMCID: PMC9352156 DOI: 10.1021/acsomega.2c03243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 05/31/2023]
Abstract
The MolNetEnhancer workflow was applied to molecular networking analysis of the CH2Cl2-soluble fraction of the rhizomes of Curculigo orchioides, which showed a potent inhibitory effect on the lipopolysaccharide (LPS)-induced nitric oxide production. Among the molecular network, clusters of cycloartane-type triterpenoids were classified using the ClassyFire module of MolNetEnhancer, and their structures were predicted by the in silico fragment analysis tool, Network Annotation Propagation (NAP). Using mass spectrometry (MS)-guided isolation methods, six cycloartane-type triterpenoids (1-6) were isolated, and their structures were elucidated based on the interpretation of NMR, HRESIMS, and single-crystal X-ray diffraction. Among the isolates, compounds 1 and 4, which have an α,β-unsaturated carbonyl moiety on the A-ring, exhibited significant inhibitory effects on LPS-induced nitric oxide production in RAW264.7 cells with IC50 values of 12.4 and 11.8 μM, respectively.
Collapse
Affiliation(s)
- Jun Gu Kim
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Thi Phuong Linh Le
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Jae Sang Han
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Yong Beom Cho
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Dongho Lee
- Department
of Plant Biotechnology, College of Life Sciences and Biotechnology, South Korea University, Seoul 02841, South
Korea
| | - Mi Kyeong Lee
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Bang Yeon Hwang
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| |
Collapse
|
8
|
Essono Mintsa M, Otogo N’nang E, Choque É, Siah A, Jacquin J, Muchembled J, Molinié R, Roulard R, Cailleu D, Beniddir MA, Sima Obiang C, Ondo JP, Kumulungui B, Mesnard F. Combined LC-MS/MS and Molecular Networking Approach Reveals Antioxidant and Antimicrobial Compounds from Erismadelphus exsul Bark. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111505. [PMID: 35684277 PMCID: PMC9182967 DOI: 10.3390/plants11111505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 05/19/2023]
Abstract
Erismadelphus exsul Mildbr bark is widely used in Gabonese folk medicine. However, little is known about the active compounds associated with its biological activities. In the present study, phytochemical profiling of the ethanolic extract of Erismadelphus exsul was performed using a de-replication strategy by coupling HPLC-ESI-Q/TOF with a molecular network approach. Eight families of natural compounds were putatively identified, including cyclopeptide alkaloids, esterified amino acids, isoflavonoid- and flavonoid-type polyphenols, glycerophospholipids, steroids and their derivatives, and quinoline alkaloids. All these compounds were identified for the first time in this plant. The use of molecular networking obtained a detailed phytochemical overview of this species. Furthermore, antioxidant (2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and ferric reducing capacity (FRAP)) and in vitro antimicrobial activities were assessed. The crude extract, as well as fractions obtained from Erismadelphus exsul, showed a better reactivity to FRAP than DPPH. The fractions were two to four times more antioxidant than ascorbic acid while reacting to FRAP, and there was two to nine times less antioxidant than this reference while reacting to DPPH. In addition, several fractions and the crude extract exhibited a significant anti-oomycete activity towards the Solanaceae phytopathogen Phytophthora infestans in vitro, and, at a lower extent, the antifungal activity against the wheat pathogen Zymoseptoria tritici had growth inhibition rates ranging from 0 to 100%, depending on the tested concentration. This study provides new insights into the phytochemical characterization and the bioactivities of ethanolic extract from Erismadelphus exsul bark.
Collapse
Affiliation(s)
- Morel Essono Mintsa
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Elvis Otogo N’nang
- Laboratoire de Substances Naturelles, Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon
- Correspondence: (E.O.N.); (F.M.); Tel.: +241-062801523 (E.O.N.); +33-684189115 (F.M.)
| | - Élodie Choque
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Ali Siah
- UMRt BioEcoAgro 1158-INRAE, JUNIA, Équipe Métabolites Spécialisés D’origine Végétale, Institut Charles Viollette, F-59000 Lille, France; (A.S.); (J.J.); (J.M.)
| | - Justine Jacquin
- UMRt BioEcoAgro 1158-INRAE, JUNIA, Équipe Métabolites Spécialisés D’origine Végétale, Institut Charles Viollette, F-59000 Lille, France; (A.S.); (J.J.); (J.M.)
| | - Jerome Muchembled
- UMRt BioEcoAgro 1158-INRAE, JUNIA, Équipe Métabolites Spécialisés D’origine Végétale, Institut Charles Viollette, F-59000 Lille, France; (A.S.); (J.J.); (J.M.)
| | - Roland Molinié
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Romain Roulard
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Dominique Cailleu
- Plateforme Analytique, Université de Picardie Jules Verne, 33 Rue Saint Leu, F-80039 Amiens, France;
| | - Mehdi A. Beniddir
- Équipe Chimie des Substances Naturelles BioCIS, CNRS, Université Paris Saclay, 5 Rue J.-B. Clément, F-92290 Châtenay-Malabry, France;
| | - Cédric Sima Obiang
- Laboratoire de Recherches en Biochimie, Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon; (C.S.O.); (J.-P.O.)
| | - Joseph-Privat Ondo
- Laboratoire de Recherches en Biochimie, Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon; (C.S.O.); (J.-P.O.)
| | - Brice Kumulungui
- Centre International de Recherches Médicales de Franceville P.O. Box 943, Gabon;
| | - François Mesnard
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
- Correspondence: (E.O.N.); (F.M.); Tel.: +241-062801523 (E.O.N.); +33-684189115 (F.M.)
| |
Collapse
|