1
|
Tian T, Hu HY, Ma YS, Qin JW, Li CT, Li Y. Effects of light quality on agronomic traits, antioxidant capacity and nutritional composition of Sarcomyxa Edulis. Sci Rep 2024; 14:24762. [PMID: 39433842 PMCID: PMC11494199 DOI: 10.1038/s41598-024-76833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024] Open
Abstract
Sarcomyxa edulis, a notable edible and medicinal mushroom indigenous to northeast China, is celebrated for its high nutritional value and delightful taste. In this study, white light as a control and examined the effects of red, green, and blue light on the agronomic traits, antioxidant capabilities, and nutritional composition of S. edulis. The results showed that different monochromatic light qualities affected the color of S. edulis pileus, with blue light demonstrating particular efficacy. Furthermore, blue light also regulated pileus length, whereas red light was instrumental in significantly increasing stalk length. Regarding antioxidant capacity, compared with red and green light, the activities of POD, SOD, and CAT were significantly improved by blue light irradiation, decreased MDA levels, and improved free radical scavenging potential. Additionally, blue light exposure led to an increase in the contents of 15 amino acids. Green light treatment reduced the crude fat content. For the first time, we found that light quality is a key factor in controlling the color of S. edulis. Blue light is an effective way to regulate the color and pileus size of S. edulis, and improve the antioxidant properties. The photobiological characteristics and the response of nutritional quality to light environment of S. edulis were clarified.
Collapse
Affiliation(s)
- Tian Tian
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Hui-Yue Hu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Yong-Sheng Ma
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Jia-Wen Qin
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Chang-Tian Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
| | - Yu Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China.
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
| |
Collapse
|
2
|
Patra JK, Shin HS, Yang IJ, Nguyen LTH, Das G. Sustainable Utilization of Food Biowaste (Papaya Peel) Extract for Gold Nanoparticle Biosynthesis and Investigation of Its Multi-Functional Potentials. Antioxidants (Basel) 2024; 13:581. [PMID: 38790686 PMCID: PMC11118099 DOI: 10.3390/antiox13050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Papaya contains high amounts of vitamins A, C, riboflavin, thiamine, niacin, ascorbic acid, potassium, and carotenoids. It is confirmed by several studies that all food waste parts such as the fruit peels, seeds, and leaves of papaya are potential sources of phenolic compounds, particularly in the peel. Considering the presence of numerous bioactive compounds in papaya fruit peels, the current study reports a rapid, cheap, and environmentally friendly method for the production of gold nanoparticles (AuNPs) employing food biowaste (vegetable papaya peel extract (VPPE)) and investigated its antioxidant, antidiabetic, tyrosinase inhibition, anti-inflammatory, antibacterial, and photocatalytic degradation potentials. The phytochemical analysis gave positive results for tannins, saponins, steroids, cardiac steroidal glycoside, protein, and carbohydrates. The manufactured VPPE-AuNPs were studied by UV-Vis scan (with surface plasmon resonance of 552 nm), X-ray diffraction analysis (XRD) (with average crystallite size of 44.41 nm as per the Scherrer equation), scanning electron microscopy-energy-dispersive X-ray (SEM-EDS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), particle size, zeta potential, etc. The mean dimension of the manufactured VPPE-AuNPs is 112.2 d.nm (PDI-0.149) with a -26.1 mV zeta potential. The VPPE-AuNPs displayed a significant antioxidant effect (93.24% DPPH scavenging and 74.23% SOD inhibition at 100 µg/mL); moderate tyrosinase effect (with 30.76%); and substantial α-glucosidase (95.63%) and α-amylase effect (50.66%) at 100 µg/mL. Additionally, it was found to be very proficient in the removal of harmful methyl orange and methylene blue dyes with degradation of 34.70% at 3 h and 24.39% at 5 h, respectively. Taken altogether, the VPPE-AuNPs have been proven to possess multiple biopotential activities, which can be explored by the food, cosmetics, and biomedical industries.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (I.-J.Y.); (L.T.H.N.)
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (I.-J.Y.); (L.T.H.N.)
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
| |
Collapse
|
3
|
Shi D, Liao N, Liu H, Gao W, Zhong S, Zheng C, Chen H, Xiao L, Zhu Y, Huang S, Zhang Y, Hu Y, Zheng Y, Ji J, Cheng J. Rapid Analysis of Compounds from Piperis Herba and Piperis Kadsurae Caulis and Their Differences Using High-Resolution Liquid-Mass Spectrometry and Molecular Network Binding Antioxidant Activity. Molecules 2024; 29:439. [PMID: 38257353 PMCID: PMC10821392 DOI: 10.3390/molecules29020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
There is a serious mixing of Piperis Herba and Piperis Kadsurae Caulis in various parts of China due to the similar traits of lianas, and there is a lack of systematic research on the compound and activity evaluation of the two. Likewise, the differences in compounds brought about by the distribution of origin also need to be investigated. In this study, high-resolution liquid-mass spectrometry (UPLC-Q-Zeno-TOF-MS/MS) was used to analyze samples of Piperis Herba from five origins and Piperis Kadsurae Caulis from five origins, with three batches collected from each origin. The compounds were identified based on precise molecular weights, secondary fragments, and an online database combined with node-to-node associations of the molecular network. The t-test was used to screen and analyze the differential compounds between the two. Finally, the preliminary evaluation of antioxidant activity of the two herbs was carried out using DPPH and ABTS free radical scavenging assays. The results showed that a total of 72 compounds were identified and deduced in the two Chinese medicines. These compounds included 54 amide alkaloids and 18 other compounds, such as flavonoid glycosides. The amide alkaloids among them were then classified, and the cleavage pathways in positive ion mode were summarized. Based on the p-value of the t-test, 32 differential compounds were screened out, and it was found that the compounds of Piperis Herba were richer and possessed a broader spectrum of antioxidant activity, thus realizing a multilevel distinction between Piperis Herba and Piperis Kadsurae Caulis. This study provides a preliminary reference for promoting standardization and comprehensive quality research of the resources of Piperis Herba using Piperis Kadsurae Caulis as a reference.
Collapse
Affiliation(s)
- Dezhi Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Nanxi Liao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Hualan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Wufeng Gao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Shaohui Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Chao Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Haijie Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
| | - Lianlian Xiao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Yubo Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Shiwen Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
| | - Yunyu Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Yang Hu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Yunfeng Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Jing Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| |
Collapse
|
4
|
Widoyanti AAE, Chaikong K, Rangsinth P, Saengratwatchara P, Leung GPH, Prasansuklab A. Valorization of Nam Wah Banana ( Musa paradisiaca L.) Byproducts as a Source of Bioactive Compounds with Antioxidant and Anti-inflammatory Properties: In Vitro and In Silico Studies. Foods 2023; 12:3955. [PMID: 37959074 PMCID: PMC10649638 DOI: 10.3390/foods12213955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Nam Wah banana (Musa paradisiaca L.) is the most common banana cultivar in Thailand. Large amounts of its non-consumable byproducts are considered undervalued and thrown as waste. Exploring the potential utilization and application of banana byproducts for human benefit can add to their value and minimize the risk of threats. This study aimed to investigate phytochemicals, antioxidant and anti-inflammatory activities, and toxicity of Nam Wah banana byproducts. Five banana plant parts, including the midrib, leaf, peduncle, unripe and ripe peels, were extracted using hexane, ethyl acetate, ethanol, and water. Among the extracts tested, the ethyl acetate leaf extract showed the strongest antioxidant capacity and anti-inflammatory activity, probably through the inhibition of inducible nitric oxide synthase (iNOS) and 15-lipoxygenase (15-LOX). Positive correlations existed between the activities and the total phenolic/flavonoid content of banana byproducts. An in silico docking analysis demonstrated that flavonoid glycosides in banana byproducts, such as kaempferol-3-O-rutinoside and rutin, may bind to inducible iNOS, whereas omega-3-polyunsaturated fatty acids, such as eicosapentaenoic acid, may bind to 15-LOX and cyclooxygenase-2 (COX-2). The extracts showed either low or no toxicity. These findings suggest that banana byproducts are a natural source of antioxidant and anti-inflammatory compounds. It is recommended that additional investigations be conducted to explore their potential therapeutic applications in treating disorders linked with oxidative stress or inflammation. This research has the potential to enhance the value of banana byproducts.
Collapse
Affiliation(s)
- Ansella Amanda Epifani Widoyanti
- Graduate Program in Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Kamonwan Chaikong
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.C.); (P.S.)
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; (P.R.); (G.P.-H.L.)
| | - Patcharaporn Saengratwatchara
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.C.); (P.S.)
- Faculty of Pharmacy, Payap University, Chiangmai 50000, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; (P.R.); (G.P.-H.L.)
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-ageing (Neur-Age Natura) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Huang L, Tao S, Zhu Y, Pan Y, Zhang Z, Yu Z, Chen Y. Regulation of Embden-Meyerhof-Parnas (EMP) Pathway and Tricarboxylic Acid (TCA) Cycle Concerning Aberrant Chilling Injury Behavior in Postharvest Papaya ( Carica papaya L.). Int J Mol Sci 2023; 24:13898. [PMID: 37762201 PMCID: PMC10530671 DOI: 10.3390/ijms241813898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Postharvest abnormal chilling injury (CI) behavior in papaya (Carica papaya L.) fruit is a rare phenomenon that may be associated with respiratory metabolism. This study thus aimed to investigate the impacts of storage temperatures (1 and 6 °C) on the respiratory metabolism of postharvest papaya and its impact on CI development. Results demonstrated that 1 °C storage reduced the activities of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), and α-ketoglutarate dehydrogenase (α-KGDH) and regulated the expression of corresponding enzymes in the Embden-Meyerhof-Parnas (EMP) pathway and tricarboxylic acid (TCA) cycle compared with 6 °C storage, resulting in a lower respiration rate of the EMP-TCA pathway and mitigating the development of CI. Meanwhile, lower contents of nicotinamide adenine dinucleotide (hydrogen) (NAD(H)) were observed in papaya fruit stored at 1 °C. Notably, papaya fruit stored at 1 °C maintained higher activity and transcriptional levels of SDH and IDH during the whole storage period. These findings suggest that 1 °C storage reduced the respiration rate of the EMP-TCA pathway by reducing the expression level and activity of related enzymes, which is conducive to the reduction of respiration substrate consumption and finally alleviating the occurrence of CI.
Collapse
Affiliation(s)
- Lijin Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.H.); (S.T.); (Y.Z.); (Z.Z.); (Z.Y.); (Y.C.)
| | - Shoukui Tao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.H.); (S.T.); (Y.Z.); (Z.Z.); (Z.Y.); (Y.C.)
| | - Yi Zhu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.H.); (S.T.); (Y.Z.); (Z.Z.); (Z.Y.); (Y.C.)
| | - Yonggui Pan
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.H.); (S.T.); (Y.Z.); (Z.Z.); (Z.Y.); (Y.C.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.H.); (S.T.); (Y.Z.); (Z.Z.); (Z.Y.); (Y.C.)
| | - Zhiqian Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.H.); (S.T.); (Y.Z.); (Z.Z.); (Z.Y.); (Y.C.)
| | - Yezhen Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.H.); (S.T.); (Y.Z.); (Z.Z.); (Z.Y.); (Y.C.)
| |
Collapse
|
6
|
Baesso AS, da Silva DJ, Soares AK, Silva Paula MMD, de Cademartori PHG. Biosynthesis of gold nanoparticles using papaya seed extract for the functionalization of nanocellulose membranes. INDUSTRIAL CROPS AND PRODUCTS 2023; 197:116601. [DOI: 10.1016/j.indcrop.2023.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Ligustrazine as an Extract from Medicinal and Edible Plant Chuanxiong Encapsulated in Liposome–Hydrogel Exerting Antioxidant Effect on Preventing Skin Photoaging. Polymers (Basel) 2022; 14:polym14214778. [PMID: 36365773 PMCID: PMC9655468 DOI: 10.3390/polym14214778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term sunlight exposure will cause the accumulation of free radicals in the skin and lead to oxidative damage and aging, antioxidant drugs have gradually become the focus of research, but there is little research on antioxidant drugs for percutaneous treatment. The purpose of this study was to prepare ligustrazine hydrochloride (TMPZ)-loaded liposome–hydrogel (TMPZ-LG), evaluate its antioxidant properties, and apply it on the skin of mice to observe whether it had preventive and therapeutic effect on the irradiation under the ultraviolet rays, in an attempt to make it into a new kind of delivery through the skin. TMPZ-LG was prepared by the combination of film dispersion and sodium carboxymethylcellulose (2%, CMC-Na) natural swelling method. The release rates in vitro permeation across the dialysis membrane and ex vivo transdermal had both reached 40%; the scavenging effect of TMPZ-LG on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and H2O2 were 65.57 ± 4.13% and 73.06 ± 5.65%; the inhibition rate of TMPZ-LG on malondialdehyde (MDA) production in liver homogenate and anti-low density lipoprotein (LDL) oxidation experiments ex vivo were 15.03 ± 0.9% and 21.57 ± 1.2%. Compared with untreated mice, the skin pathological symptoms of mice coated with TMPZ-LG were significantly reduced after ultraviolet irradiation, and there was statistical significance. The results showed TMPZ-LG could exert good antioxidant activity in vitro and ex vivo; therefore, it is feasible to prevent and treat skin oxidation.
Collapse
|
8
|
Roy JR, Janaki CS, Jayaraman S, Periyasamy V, Balaji T, Vijayamalathi M, Veeraraghavan VP. Carica papaya Reduces Muscle Insulin Resistance via IR/GLUT4 Mediated Signaling Mechanisms in High Fat Diet and Streptozotocin-Induced Type-2 Diabetic Rats. Antioxidants (Basel) 2022; 11:antiox11102081. [PMID: 36290804 PMCID: PMC9598374 DOI: 10.3390/antiox11102081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
In the management of type 2 diabetes, oral antidiabetic drugs have several side effects, which in turn have led the pharmaceutical industry to search for good therapeutic, non-toxic and reliable drugs. Carica papaya (C. papaya) is one of several plants in nature that have been found to possess anti-diabetic properties. Despite studies being focused on the antidiabetic activity of C. papaya, the molecular mechanism against high fat diet induced insulin resistance is yet to be identified. The role of C. papaya was evaluated on insulin signaling molecules, such as the insulin receptor (IR) and glucose transporter-4 (GLUT4) in high fat, diet-streptozotocin induced type 2 diabetic rats, and analyzed the bioactive compounds of C. papaya against IR and GLUT4 via molecular docking and dynamics. The ethanolic extract of C. papaya leaves (600 mg/kg of body weight) was given daily to male wistar rats for 45 days and we observed the various biochemical parameters, gene expression analysis and histopathology of skeletal muscle. Molecular docking and dynamics were undertaken to understand the bioactive compounds with the greatest hit rate. C. papaya treatment was able to control blood glucose levels, the lipid profile and serum insulin, but it facilitated tissue antioxidant enzymes and IR and GLUT4 levels. The in-silico study showed that kaempferol, quercitin and transferulic acid were the top three ligands with the greatest hit rate against the protein targets. Our preliminary findings, for the first time, showed that C. papaya reinstates the glycemic effect in the diabetic skeletal muscle by accelerating the expression of IR and GLUT4.
Collapse
Affiliation(s)
- Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai 600 073, Tamil Nadu, India
- Correspondence: (J.R.R.); (S.J.)
| | - Coimbatore Sadagopan Janaki
- Department of Anatomy, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai 600 073, Tamil Nadu, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
- Correspondence: (J.R.R.); (S.J.)
| | - Vijayalakshmi Periyasamy
- Department of Biotechnology and Bioinformatics, Holy Cross College, Trichy 620 002, Tamil Nadu, India
| | - Thotakura Balaji
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai 603 103, Tamil Nadu, India
| | - Madhavan Vijayamalathi
- Department of Physiology, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai 600 073, Tamil Nadu, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
9
|
Comprehensive Assessment of Antioxidant and Anti-Inflammatory Properties of Papaya Extracts. Foods 2022; 11:3211. [PMCID: PMC9601897 DOI: 10.3390/foods11203211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Antioxidant and anti-inflammatory properties of papaya (Carica papaya) fruits were evaluated to provide comprehensive information associated with the bioactive compounds. ‘Tainung No. 2’ papaya fruits, cultivated in a greenhouse, Korea, were harvested at unripe and ripe stages and then divided into seed and peel-pulp. Total phenolic and flavonoid contents were determined using spectrophotometry, and individual phenolic compounds were relatively quantified by HPLC-DAD and fifteen standards. Antioxidant activities were measured using four assays: DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) scavenging activities, inhibition of lipid peroxidation, and FRAP (ferric reducing antioxidant power). Anti-inflammatory activities were measured by the regulation of NF-κB signaling pathways with the measurements of ROS and NO productions as the degree of oxidative stress. Total phenol contents increased in seed and peel–pulp extracts during ripening; flavonoid contents increased only in seed extracts. Total phenolic contents were associated with ABTS radical scavenging activity and FRAP. Of fifteen phenolic compounds, chlorogenic acid, cynarin, eupatorine, neochlorogenic acid, and vicenin II were identified among papaya extracts. ROS and NO productions were inhibited in papaya extracts. Especially, NO productions were inhibited higher in ripe seed extracts than in other extracts, which would be associated with the suppression of NF-κB activation and iNOS expression. These results suggest that papaya fruit extracts, including seeds, peels, and pulps, could be potential raw materials for functional foods.
Collapse
|
10
|
Effect of propolis extract as a natural preservative on quality and shelf life of marinated chicken breast (chicken Kebab). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Iordănescu OA, Băla M, Iuga AC, Gligor (Pane) D, Dascălu I, Bujancă GS, David I, Hădărugă NG, Hădărugă DI. Antioxidant Activity and Discrimination of Organic Apples ( Malus domestica Borkh.) Cultivated in the Western Region of Romania: A DPPH· Kinetics-PCA Approach. PLANTS 2021; 10:plants10091957. [PMID: 34579489 PMCID: PMC8466220 DOI: 10.3390/plants10091957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Apple (Malus domestica Borkh.) is one of the most used fruit for beverages in Romania. The goal of the study was to evaluate the antioxidant activity and discrimination of various parts of organic and non-organic apple varieties cultivated in the western region of Romania using the DPPH· kinetics–PCA (principal component analysis) approach. Organic and non-organic apples were subjected to solid–liquid ethanol extraction. Core and shell extracts were mixed with DPPH· and spectrophotometrically monitored at 517 nm. Antioxidant activity and mean DPPH· reaction rate at various time ranges reveal significant differences between organic and non-organic samples, as well as apple parts. Organic core and shell extracts had higher antioxidant activities than the corresponding non-organic samples (74.5–96.9% and 61.9–97.2%, respectively, 23.5–94.3% and 59.5–95.5%). Significant differences were observed for the DPPH· reaction rate for the first ½ min, especially in the presence of organic core extracts (3.7–4.8 μM/s). The organic samples were well discriminated by DPPH· kinetics–PCA, the most important variables being the DPPH· reaction rate for the first time range. This is the first DPPH· kinetics–PCA approach applied for discriminating between organic and non-organic fruits and can be useful for evaluating the quality of such type of fruits.
Collapse
Affiliation(s)
- Olimpia Alina Iordănescu
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Maria Băla
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Alina Carmen Iuga
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Dina Gligor (Pane)
- Doctoral School “Engineering of Vegetable and Animal Resources”, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (D.G.); (D.I.H.)
| | - Ionuţ Dascălu
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Gabriel Stelian Bujancă
- Department of Food Control, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania;
| | - Ioan David
- Department of Food Science, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Correspondence: (I.D.); or (N.G.H.); Tel.: +40-256-277-423 (N.G.H.)
| | - Nicoleta Gabriela Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (D.G.); (D.I.H.)
- Department of Food Science, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Correspondence: (I.D.); or (N.G.H.); Tel.: +40-256-277-423 (N.G.H.)
| | - Daniel Ioan Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (D.G.); (D.I.H.)
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| |
Collapse
|