1
|
Vieira Sanches M, Oliva M, Fumagalli G, Mezzetta A, Guazzelli L, Freitas R, Pretti C. Short alkyl-chained Imidazolium-based Ionic Liquids: Promising green solution or potential environmental threat? CHEMOSPHERE 2024; 370:143928. [PMID: 39681190 DOI: 10.1016/j.chemosphere.2024.143928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024]
Abstract
Ionic Liquids (ILs) are currently applied in a wide variety of fields, with promising outcomes in microalgae high value biocompounds extraction. The occurrence of these compounds in natural water systems, with their characteristic stability and low biodegradability, becomes a threat worthy of attention. In the present study, Dunaliella tertiolecta, Isochrysis galbana and Rhinomonas reticulata were exposed to 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM] Tf2N) for 72, 168 and 264 h, at 20 and 25 °C. Obtained results suggest that the N-containing cationic ring in the selected IL could act as a nitrogen source, aiding protein synthesis and growth in the three studied microalgae. Moreover, this specific IL might become a potential eutrophication agent when discharged in aquatic ecosystems, already pressured by climate change conditions. Important lipid contents, mainly in I. galbana and associated with increased cellular energy allocation values, could be related to mitochondrial stress, which is known to be a lipid accumulation promoting factor. Hence, we hypothesise that, since [BMIM] Tf2N does not appear to impair growth or biocompound accumulation, it could be a candidate for microalgae biomass pretreatment in biodiesel production. However, its life cycle and disposal must be carefully considered.
Collapse
Affiliation(s)
- Matilde Vieira Sanches
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy.
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy.
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy.
| |
Collapse
|
2
|
Ma SL, Sun S, Li TZ, Yan YJ, Wang ZK. Application research and progress of microalgae as a novel protein resource in the future. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39600179 DOI: 10.1080/10408398.2024.2431208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Economic growth and health awareness spotlight opportunities and challenges in the food industry, particularly with decreasing arable land, climate change, dwindling freshwater resources, and pollution affecting traditional protein sources. Microalgae have emerged as a promising alternative, with higher protein content, better nutritional quality, and greater environmental resilience compared to conventional crops. They offer a protein balance comparable to meat, making them a sustainable protein source with health benefits like antioxidants, cardiovascular support, and anti-inflammatory properties. Improving the protein content of microalgae through optimized cultivation techniques is crucial to fully realize its potential as a novel food source. While there are already microalgae-based food products in the market, challenges remain in utilizing microalgal protein for widespread food production, emphasizing the need for further research. This review article explores the impact of microalgae culture conditions on protein content, the physicochemical and nutritional characteristics of microalgal protein, the health advantages of microalgal proteins and their derivatives, as well as research on separating and purifying microalgal proteins and their derivatives. It also delves into the current opportunities and obstacles of microalgal proteins and their derivatives as food, highlighting the potential for investigating the link between microalgal protein food and human health.
Collapse
Affiliation(s)
- S L Ma
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - S Sun
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, China
| | - T Z Li
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, China
- Amway (China) Botanical R&D Center, Wuxi, China
| | - Y J Yan
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Z K Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
3
|
Fathy WA, AbdElgawad H, Hashem AH, Essawy E, Tawfik E, Al-Askar AA, Abdelhameed MS, Hammouda O, Elsayed KNM. Exploring Exogenous Indole-3-acetic Acid's Effect on the Growth and Biochemical Profiles of Synechocystis sp. PAK13 and Chlorella variabilis. Molecules 2023; 28:5501. [PMID: 37513371 PMCID: PMC10385099 DOI: 10.3390/molecules28145501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Microalgae have garnered scientific interest for their potential to produce bioactive compounds. However, the large-scale industrial utilization of microalgae faces challenges related to production costs and achieving optimal growth conditions. Thus, this study aimed to investigate the potential role of exogenous indole-3-acetic acid (IAA) application in improving the growth and production of bioactive metabolites in microalgae. To this end, the study employed different concentrations of exogenously administered IAA ranging from 0.36 µM to 5.69 µM to assess its influence on the growth and biochemical composition of Synechocystis and Chlorella. IAA exposure significantly increased IAA levels in both strains. Consequentially, improved biomass accumulation in parallel with increased total pigment content by approximately eleven-fold in both strains was observed. Furthermore, the application of IAA stimulated the accumulation of primary metabolites. Sugar levels were augmented, providing a carbon source that facilitated amino acid and fatty acid biosynthesis. As a result, amino acid levels were enhanced as well, leading to a 1.55-fold increase in total amino acid content in Synechocystis and a 1.42-fold increase in Chlorella. Total fatty acids content increased by 1.92-fold in Synechocystis and by 2.16-fold in Chlorella. Overall, the study demonstrated the effectiveness of exogenously adding IAA as a strategy for enhancing the accumulation of microalgae biomass and biomolecules. These findings contribute to the advancement of microalgae-based technologies, opening new avenues to produce economically important compounds derived from microalgae.
Collapse
Affiliation(s)
- Wael A Fathy
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, BE-2020 Antwerp, Belgium
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Ehab Essawy
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Eman Tawfik
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
| | - Ola Hammouda
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni Suef University, Beni Suef 62511, Egypt
| |
Collapse
|
4
|
Landi S, Santini G, Vitale E, Di Natale G, Maisto G, Arena C, Esposito S. Photosynthetic, Molecular and Ultrastructural Characterization of Toxic Effects of Zinc in Caulerpa racemosa Indicate Promising Bioremediation Potentiality. PLANTS (BASEL, SWITZERLAND) 2022; 11:2868. [PMID: 36365321 PMCID: PMC9653827 DOI: 10.3390/plants11212868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Caulerpaceae are unconventional green algae composed of multinucleated, single siphonous cells. The species of Caulerpa are acquiring major scientific interest for both their invasion in the Mediterranean ecological niche and for the production of valuable natural metabolites. Furthermore, the abilities of Caulerpa spp. in the biorecovery of polluted waters were recently investigated. Among heavy metal contaminants in marine systems, zinc (Zn) is considered a critical pollutant, progressively accumulating from plastic leachates. In this study, the responses of Caulerpa racemosa to different levels (5-10 mg L-1) of Zn were studied for 14 days under laboratory-controlled conditions. Effects of Zn were monitored by measuring the growth rate, photosynthetic efficiency and gene expression. Moreover, the ability of Caulerpa to remove Zn from seawater was monitored. Zn induced detrimental effects by decreasing the relative growth rate (RGR) and maximal PSII photochemical efficiency (Fv/Fm). Moreover, C. racemosa, grown in contaminated seawater, reduced the levels of Zn to a final concentration of 1.026 and 1.932 mg L-1 after 14 days, thus demonstrating efficient uptake. Therefore, our results characterized the effects of zinc on C. racemosa and the possible role of this alga as being effective in the bioremediation of marine seawater.
Collapse
Affiliation(s)
- Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Giorgia Santini
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Ermenegilda Vitale
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Gabriella Di Natale
- Department of Chemistry, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Giulia Maisto
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Carmen Arena
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Sergio Esposito
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
5
|
Venugopal V, Sasidharan A. Functional proteins through green refining of seafood side streams. Front Nutr 2022; 9:974447. [PMID: 36091241 PMCID: PMC9454818 DOI: 10.3389/fnut.2022.974447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Scarcity of nutritive protein is a major global problem, the severity of which is bound to increase with the rising population. The situation demands finding additional sources of proteins that can be both safe as well as acceptable to the consumer. Food waste, particularly from seafood is a plausible feedstock of proteins in this respect. Fishing operations result in appreciable amounts of bycatch having poor food value. In addition, commercial processing results in 50 to 60% of seafood as discards, which consist of shell, head, fileting frames, bones, viscera, fin, skin, roe, and others. Furthermore, voluminous amounts of protein-rich effluents are released during commercial seafood processing. While meat from the bycatch can be raw material for proteinous edible products, proteins from the process discards and effluents can be recovered through biorefining employing upcoming, environmental-friendly, low-cost green processes. Microbial or enzyme treatments release proteins bound to the seafood matrices. Physico-chemical processes such as ultrasound, pulse electric field, high hydrostatic pressure, green solvent extractions and others are available to recover proteins from the by-products. Cultivation of photosynthetic microalgae in nutrient media consisting of seafood side streams generates algal cell mass, a rich source of functional proteins. A zero-waste marine bio-refinery approach can help almost total recovery of proteins and other ingredients from the seafood side streams. The recovered proteins can have high nutritive value and valuable applications as nutraceuticals and food additives.
Collapse
|