1
|
Topham K, Stockwell V, Grinstead S, Mollov D. Genomic characterization and survey of a second luteovirus infecting blueberries. Virus Res 2024; 350:199480. [PMID: 39428039 PMCID: PMC11559629 DOI: 10.1016/j.virusres.2024.199480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
New and emerging viral problems may be contributing to blueberry decline. In this research we described a new virus detected in Oregon blueberry production field and surveyed the region for its potential spread. The complete genome sequence of a putative new member of the genus Luteovirus was obtained from blueberry (Vaccinium corymbosum L.) by high throughput sequencing and 5'/3'-RACE. The new virus was tentatively named blueberry virus M (BlVM). Its genome is 5,018 nt long with four putative open reading frames. Similarly to some recently discovered luteoviruses, BlVM does not possess any movement protein (MP). Phylogenetic analysis confirmed clustering of BlVM with the group of non-MP luteoviruses, showing blueberry virus L as the most similar species. Through a small-scale high throughput sequencing survey we obtained 14 additional near complete genomic sequences. A larger survey of 2,654 samples by RT-PCR in Oregon and Washington (USA) found 52 BlVM-positive plants collected from four locations in Oregon. These findings will facilitate monitoring virus distribution and assessment of potential disease associated with this new and emerging blueberry virus.
Collapse
Affiliation(s)
- Katherine Topham
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States; USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States
| | - Virginia Stockwell
- USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States
| | - Samuel Grinstead
- USDA ARS, Molecular Plant Pathology Laboratory, Beltsville, MD, United States
| | - Dimitre Mollov
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States; USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States.
| |
Collapse
|
2
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
3
|
Lee GE, Lee HJ, Jeong RD. Comprehensive Metatranscriptomic Analysis of Plant Viruses in Imported Frozen Cherries and Blueberries. THE PLANT PATHOLOGY JOURNAL 2024; 40:377-389. [PMID: 39117336 PMCID: PMC11309839 DOI: 10.5423/ppj.oa.06.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
The possibility of new viruses emerging in various regions worldwide has increased due to a combination of factors, including climate change and the expansion of international trading. Plant viruses spread through various transmission routes, encompassing well-known avenues such as pollen, seeds, and insects. However, research on potential transmission routes beyond these known mechanisms has remained limited. To address this gap, this study employed metatranscriptomic analysis to ascertain the presence of plant viruses in imported frozen fruits, specifically cherries and blueberries. This analysis aimed to identify pathways through which plant viruses may be introduced into countries. Virome analysis revealed the presence of six species of plant viruses in frozen cherries and blueberries: cherry virus A (CVA), prunus necrotic ringspot virus (PNRSV), prune dwarf virus (PDV), prunus virus F (PrVF), blueberry shock virus (BlShV), and blueberry latent virus (BlLV). Identifying these potential transmission routes is crucial for effectively managing and preventing the spread of plant viruses and crop protection. This study highlights the importance of robust quality control measures and monitoring systems for frozen fruits, emphasizing the need for proactive measures to mitigate the risk associated with the potential spread of plant viruses.
Collapse
Affiliation(s)
- Ga-Eun Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| |
Collapse
|
4
|
Alvarez-Quinto R, Grinstead S, Kinard G, Martin R, Mollov D. Complete genome sequence of vaccinium-associated virus C, a new member of the family Totiviridae from Vaccinium floribundum. Arch Virol 2024; 169:86. [PMID: 38558201 DOI: 10.1007/s00705-024-06008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Blueberries (Vaccinium sp.) are a major crop grown in the Pacific Northwest region. Currently, there are at least 17 known viruses that infect blueberry plants, and some of them cause a wide range of symptoms and economic losses. A new virus, vaccinium-associated virus C (VaVC) (family Totiviridae, genus Totivirus) was identified in an imported blueberry accession from the USDA-ARS National Clonal Germplasm Repository in Corvallis, Oregon. The complete genomic sequence of VaVC was determined, but the biological significance of VaVC is unknown and requires further study. Additional Vaccinium sp. accessions should be screened to investigate the incidence of this new virus.
Collapse
Affiliation(s)
- Robert Alvarez-Quinto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Samuel Grinstead
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
| | - Gary Kinard
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
| | - Robert Martin
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA
| | - Dimitre Mollov
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, 97330, USA.
| |
Collapse
|
5
|
Wan X, Wu Z, Sun D, Long L, Song Q, Gao C. Cytological characteristics of blueberry fruit development. BMC PLANT BIOLOGY 2024; 24:184. [PMID: 38475704 DOI: 10.1186/s12870-024-04809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
Using the blueberry cultivar "Powderblue" after pollination, fruits at different developmental stages were collected for study. The transverse and longitudinal diameters, individual fruit weight, and fruit water content were measured during their development. Employing tissue sectioning and microscopy techniques, we systematically studied the morphological features and anatomical structures of the fruits and seeds at various developmental stages, aiming to elucidate the cytological patterns during blueberry fruit development. The results of our study revealed that the "Powderblue" blueberry fruit growth and development followed a double "S" curve. Mature "Powderblue" blueberries were blue-black in color, elliptical in shape, with five locules, an inferior ovary, and an average fruit weight of 1.73 ± 0.17 g, and a moisture content of 78.865 ± 0.9%. Blueberry fruit flesh cells were densely arranged with no apparent intercellular spaces, and mesocarp cells accounted for 52.06 ± 7.4% of fruit cells. In the early fruit development stages, the fruit flesh cells were rapidly dividing, significantly increasing in number but without greatly affecting the fruit's morphological characteristics. During the later stages of fruit development, the expansion of the fruit flesh cells became prominent, resulting in a noticeable increase in the fruit's dimensions. Except for the epidermal cells, cells in all fruit tissues showed varying degrees of rupture as fruit development progressed, with the extent of cell rupture increasing, becoming increasingly apparent as the fruit gradually softened. Additionally, numerous brachysclereids (stone cells) appeared in the fruit flesh cells. Stone cells are mostly present individually in the fruit flesh tissue, while in the placental tissue, they often group together. The "Powderblue" blueberry seeds were light brown, 4.13 ± 0.42 mm long, 2.2 ± 0.14 mm wide, with each fruit containing 50-60 seeds. The "Powderblue" seeds mainly consisted of the seed coat, endosperm, and embryo. The embryo was located at the chalazal end in the center of the endosperm and was spatially separated. The endosperm, occupying the vast majority of the seed volume, comprised both the chalazal and outer endosperm, and the endosperm developed and matured before the embryo. As the seed developed, the seed coat was gradually lignified and consisted of palisade-like stone cells externally and epidermal layer cells internally.
Collapse
Affiliation(s)
- Xianqin Wan
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zewei Wu
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Dongchan Sun
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Li Long
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Qiling Song
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Gao
- Institute for Forest Resources and Environment of Guizhou, Key laboratory of forest cultivation in plateau mountain of Guizhou province, College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Stainton D, Villamor DEV, Sierra Mejia A, Srivastava A, Mollov D, Martin RR, Tzanetakis IE. Genomic analyses of a widespread blueberry virus in the United States. Virus Res 2023; 333:199143. [PMID: 37271421 PMCID: PMC10352716 DOI: 10.1016/j.virusres.2023.199143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Screening of blueberry accessions using high throughput sequencing revealed the presence of a new virus. Genomic structure and sequence are similar to that of nectarine stem pitting associated virus (NSPaV), a member of the genus Luteovirus, family Tombusviridae. The full genome of the new luteovirus, tentatively named blueberry virus L (BlVL), was characterized and analyzed. Similar to NSPaV, BlVL does not contain readily identifiable movement proteins in any of the seven isolates sequenced. More than 600 samples collected from five states were screened and 79% were found infected, making BlVL the most widespread blueberry virus in the United States.
Collapse
Affiliation(s)
- Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Dan E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Andrea Sierra Mejia
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Ashish Srivastava
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Dimitre Mollov
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, 3420 NW Orchard Ave, Corvallis, OR 97330; Oregon State University, Corvallis, OR 97330, USA
| | | | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| |
Collapse
|
7
|
Lee E, Vansia R, Phelan J, Lofano A, Smith A, Wang A, Bilodeau GJ, Pernal SF, Guarna MM, Rott M, Griffiths JS. Area Wide Monitoring of Plant and Honey Bee ( Apis mellifera) Viruses in Blueberry ( Vaccinium corymbosum) Agroecosystems Facilitated by Honey Bee Pollination. Viruses 2023; 15:v15051209. [PMID: 37243295 DOI: 10.3390/v15051209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Healthy agroecosystems are dependent on a complex web of factors and inter-species interactions. Flowers are hubs for pathogen transmission, including the horizontal or vertical transmission of plant-viruses and the horizontal transmission of bee-viruses. Pollination by the European honey bee (Apis mellifera) is critical for industrial fruit production, but bees can also vector viruses and other pathogens between individuals. Here, we utilized commercial honey bee pollination services in blueberry (Vaccinium corymbosum) farms for a metagenomics-based bee and plant virus monitoring system. Following RNA sequencing, viruses were identified by mapping reads to a reference sequence database through the bioinformatics portal Virtool. In total, 29 unique plant viral species were found at two blueberry farms in British Columbia (BC). Nine viruses were identified at one site in Ontario (ON), five of which were not identified in BC. Ilarviruses blueberry shock virus (BlShV) and prune dwarf virus (PDV) were the most frequently detected viruses in BC but absent in ON, while nepoviruses tomato ringspot virus and tobacco ringspot virus were common in ON but absent in BC. BlShV coat protein (CP) nucleotide sequences were nearly identical in all samples, while PDV CP sequences were more diverse, suggesting multiple strains of PDV circulating at this site. Ten bee-infecting viruses were identified, with black queen cell virus frequently detected in ON and BC. Area-wide bee-mediated pathogen monitoring can provide new insights into the diversity of viruses present in, and the health of, bee-pollination ecosystems. This approach can be limited by a short sampling season, biased towards pollen-transmitted viruses, and the plant material collected by bees can be very diverse. This can obscure the origin of some viruses, but bee-mediated virus monitoring can be an effective preliminary monitoring approach.
Collapse
Affiliation(s)
- Eunseo Lee
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
| | - Raj Vansia
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - James Phelan
- Sidney Laboratory, Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Rd., North Saanich, BC V8L 1H3, Canada
| | - Andrea Lofano
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
| | - Adam Smith
- Sidney Laboratory, Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Rd., North Saanich, BC V8L 1H3, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Guillaume J Bilodeau
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, 3851 Fallowfield Rd., Ottawa, ON K2J 4S1, Canada
| | - Stephen F Pernal
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| | - M Marta Guarna
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| | - Michael Rott
- Sidney Laboratory, Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Rd., North Saanich, BC V8L 1H3, Canada
| | - Jonathan S Griffiths
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|