1
|
Madhogaria B, Banerjee S, Chakraborty S, Dhak P, Kundu A. Alleviation of heavy metals chromium, cadmium and lead and plant growth promotion in Vigna radiata L. plant using isolated Pseudomonas geniculata. Int Microbiol 2024:10.1007/s10123-024-00546-2. [PMID: 38916652 DOI: 10.1007/s10123-024-00546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Plants exposed to heavy metals (HMs) stress negatively affect their development and production capacity. Chromium (Cr), Cadmium (Cd), and Lead (Pb) are the most common hazardous trace metals in agriculture. The physiological, biochemical, and molecular characteristics of crops are being affected. Phytoremediation is a method to alleviate heavy metals from the contaminated soil. The study aims to evaluate the phytoremediation ability of Vigna radiata L. (mung bean) in the absence and the presence of multi-metal tolerant and plant growth promoting Pseudomonas geniculata strain TIU16A3 isolated from soil of tannery industrial estate, Kolkata, West Bengal, India. The strain was further assessed with increasing concentrations of Cr, Cd, and Pb (10, 20, 40, and 80 µg/mL) when the mung bean plant was a test crop. The strain significantly increased plant growth, chlorophyll content, increased level of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase, and decreased oxidative stress indicators like H2O2 and electrolyte leakage in the presence of Cr, Cd, and Pb as compared to plants grown in the absence of Pseudomonas geniculata strain. Shoot length responsive gene (Aux/IAA) in the presence of heavy metal alone and Pseudomonas geniculata treated Cd and Cr showed higher relative expression of (Aux/IAA) compared to Pb. Due to these intrinsic abilities, Pseudomonas geniculata strain TIU16A3 can be a plant growth promoter and thus can help in the remediation of heavy metal (Cr, Cd, and Pb) contaminated soil.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Sangeeta Banerjee
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Sohini Chakraborty
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
2
|
Hur A, Saoudi MM, Ferhout H, Mzali L, Taillandier P, Bouajila J. Bacillus megaterium: Evaluation of Chemical Nature of Metabolites and Their Antioxidant and Agronomics Properties. Int J Mol Sci 2024; 25:3235. [PMID: 38542209 PMCID: PMC11487414 DOI: 10.3390/ijms25063235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 10/20/2024] Open
Abstract
Bacillus megaterium is particularly known for its abundance in soils and its plant growth promotion. To characterize the metabolites excreted by this specie, we performed successive liquid/liquid extractions from bacteria culture medium with different polarity solvents (cyclohexane, dichloromethane, ethyl acetate and butanol) to separate the metabolites in different polarity groups. The extracts were characterized regarding their total phenolic content, the amount of reducing sugar, the concentration of primary amines and proteins, their chromatographic profile by HPLC-DAD-ELSD and their chemical identification by GC-MS. Among the 75 compounds which are produced by the bacteria, 19 identifications were for the first time found as metabolites of B. megaterium and 23 were described for the first time as metabolites in Bacillus genus. The different extracts containing B. megaterium metabolites showed interesting agronomic activity, with a global inhibition of seed germination rates of soya, sunflower, corn and ray grass, but not of corn, compared to culture medium alone. Our results suggest that B. megaterium can produce various metabolites, like butanediol, cyclic dipeptides, fatty acids, and hydrocarbons, with diverse effects and sometimes with opposite effects in order to modulate its response to plant growth and adapt to various environmental effects. These findings provide new insight into bioactive properties of this species for therapeutic uses on plants.
Collapse
Affiliation(s)
- Anna Hur
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; (A.H.); (M.M.S.); (P.T.)
| | - Mohamed Marouane Saoudi
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; (A.H.); (M.M.S.); (P.T.)
| | - Hicham Ferhout
- Agronutrition, Rue Pierre et Marie Curie Immeuble, BIOSTEP, 31670 Labège, France; (H.F.); (L.M.)
| | - Laila Mzali
- Agronutrition, Rue Pierre et Marie Curie Immeuble, BIOSTEP, 31670 Labège, France; (H.F.); (L.M.)
| | - Patricia Taillandier
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; (A.H.); (M.M.S.); (P.T.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; (A.H.); (M.M.S.); (P.T.)
| |
Collapse
|
3
|
Li W, Xiao Y. Microplastics increase soil microbial network complexity and trigger diversity-driven community assembly. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122095. [PMID: 37385357 DOI: 10.1016/j.envpol.2023.122095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
The widespread existence of microplastics (MPs) in soil has been extensively demonstrated, and their presence would ineluctably change soil physicochemical properties and microbial community composition. However, there is limited understanding of how MPs affect soil microbial assembly. In this study, three different polymer types of MPs, i.e., high-density polyethylene (HDPE), polystyrene (PS), and polylactic acid (PLA), with the same particle size (100 μm) and dose (2%) were applied under the planted and unplanted condition, Pennisetum alopecuroides was chosen as a model species. Plant growth parameters, soil physicochemical properties, and microbial communities (including bacteria and eukaryotes) were determined. The assembly and the co-occurrence network of microbial communities were analyzed. Results revealed that the effect of MPs on soil physicochemical properties was type-dependent and could influenced by the presence of P . alopecuroides. MPs could enrich bacterial genera related to nitrogen cycle and some pathogens of eukaryotes. The presence of MPs changed bacterial and eukaryotic community assembly, in which diversity drove the deterministic/stochastic assembly processes. MPs addition increased the complexity of bacterial network, while had a minor effect on eukaryotic network. The inhibition of MPs on P . alopecuroides growth decayed over time, HDPE MPs was more harmful to P . alopecuroides growth than PS and PLA MPs. Our findings enormously improved our comprehensions of MPs-induced ecological impacts and interactions of soil bacterial and eukaryotic communities .
Collapse
Affiliation(s)
- Wanlin Li
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Xiao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
4
|
Wróbel M, Śliwakowski W, Kowalczyk P, Kramkowski K, Dobrzyński J. Bioremediation of Heavy Metals by the Genus Bacillus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20064964. [PMID: 36981874 PMCID: PMC10049623 DOI: 10.3390/ijerph20064964] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/12/2023]
Abstract
Environmental contamination with heavy metals is one of the major problems caused by human activity. Bioremediation is an effective and eco-friendly approach that can reduce heavy metal contamination in the environment. Bioremediation agents include bacteria of the genus Bacillus, among others. The best-described species in terms of the bioremediation potential of Bacillus spp. Are B. subtilis, B. cereus, or B. thuringiensis. This bacterial genus has several bioremediation strategies, including biosorption, extracellular polymeric substance (EPS)-mediated biosorption, bioaccumulation, or bioprecipitation. Due to the above-mentioned strategies, Bacillus spp. strains can reduce the amounts of metals such as lead, cadmium, mercury, chromium, arsenic or nickel in the environment. Moreover, strains of the genus Bacillus can also assist phytoremediation by stimulating plant growth and bioaccumulation of heavy metals in the soil. Therefore, Bacillus spp. is one of the best sustainable solutions for reducing heavy metals from various environments, especially soil.
Collapse
Affiliation(s)
- Monika Wróbel
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Wojciech Śliwakowski
- Institute of Technology and Life Sciences—National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Białystok, Kilińskiego 1 Str., 15-089 Białystok, Poland
| | - Jakub Dobrzyński
- Institute of Technology and Life Sciences—National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| |
Collapse
|
5
|
Wang G, Li J, Ji J, Zhang L, Li B, Zhang J, Wang X, Song W, Guan C. Combined application of allantoin and strain JIT1 synergistically or additively promotes the growth of rice under 2, 4-DCP stress by enhancing the phosphate solubility, improving soil enzyme activities and photosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153941. [PMID: 36739690 DOI: 10.1016/j.jplph.2023.153941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/10/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Environmental pollution by 2, 4 dichlorophenol (2, 4-DCP) has become a widespread concern due to its detrimental influence on human and natural ecosystem. With the increasing accumulation of 2, 4-DCP in soil, it is of great significance to explore some appropriate approaches for enhancing plant tolerance to 2, 4-DCP stress. In the current study, a strain resistant to 2, 4-DCP was obtained from the tall fescue rhizosphere soil and named as Pseudomonas sp. JIT1. The strain JIT1 exhibited several remarkable plant growth-promoting traits, including the production of IAA, fixation of biological nitrogen and solubilization of phosphate. The inoculation of strain JIT1 significantly increased biomass, photosynthesis, antioxidant levels, chlorophyll contents and the osmotic substance contents in rice seedlings exposed to 2, 4-DCP. Meanwhile, inoculation of strain JIT1 also enhanced activities of soil alkaline phosphatase, urease, sucrase and cellulase. Moreover, under 2, 4-DCP stress, the content of allantoin in seedlings significantly increased and the pretreatment of exogenous allantoin noticeably ameliorated the negative effects caused by 2, 4-DCP stress in rice seedlings. Interesting, allantoin treatment also enhanced phosphate solubilization properties of strain JIT1. The chlorophyll contents, photosynthesis and osmotic substance further increased by combination use of strain JIT1 and allantoin, which improved the growth of seedlings, most likely to be attributed to the synergistic or additive effect between allantoin and strain JIT1. The results of this study highlight the important roles of combined use of strain JIT1 and allantoin for improving the tolerance of rice to 2, 4-DCP to stress.
Collapse
Affiliation(s)
- Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiali Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Lishuang Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Bowen Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiaqi Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xinya Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenju Song
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
6
|
Draft Genome Sequence of Priestia sp. Strain TSO9, a Plant Growth-Promoting Bacterium Associated with Wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. PLANTS 2022; 11:plants11172231. [PMID: 36079613 PMCID: PMC9460074 DOI: 10.3390/plants11172231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Strain TSO9 was isolated from a commercial field of wheat (Triticum turgidum L. subsp. durum) located in the Yaqui, Valley, Mexico. Here, the genome of this strain was sequenced, obtaining a total of 5,248,515 bp; 38.0% G + C content; 1,186,514 bp N50; and 2 L50. Based on the 16S rRNA gene sequencing, strain TSO9 was affiliated with the genus Priestia. The genome annotation of Priestia sp. TSO9 contains a total of 147 RNAs, 128 tRNAs, 1 tmRNA, and 5512 coding DNA sequences (CDS) distributed into 332 subsystems, where CDS associated with agricultural purposes were identified, such as (i) virulence, disease, and defense (57 CDS) (i.e., resistance to antibiotics and toxic compounds (34 CDS), invasion and intracellular resistance (12 CDS), and bacteriocins and ribosomally synthesized antibacterial peptides (10 CDS)), (ii) iron acquisition and metabolism (36 CDS), and (iii) secondary metabolism (4 CDS), i.e., auxin biosynthesis. In addition, subsystems related to the viability of an active ingredient for agricultural bioproducts were identified, such as (i) stress response (65 CDS). These genomic traits are correlated with the metabolic background of this strain, and its positive effects on wheat growth regulation reported in this work. Thus, further investigations of Priestia sp. TSO9 are necessary to complement findings regarding its application in agroecosystems to increase wheat yield sustainably.
Collapse
|
7
|
Plant Development of Early-Maturing Spring Wheat (Triticum aestivum L.) under Inoculation with Bacillus sp. V2026. PLANTS 2022; 11:plants11141817. [PMID: 35890450 PMCID: PMC9317556 DOI: 10.3390/plants11141817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
The effect of a plant growth-promoting bacterium (PGPB) Bacillus sp. V2026, a producer of indolyl-3-acetic acid (IAA) and gibberellic acid (GA), on the ontogenesis and productivity of four genotypes of early-maturing spring wheat was studied under controlled conditions. The inoculation of wheat plants with Bacillus sp. V2026 increased the levels of endogenous IAA and GA in wheat of all genotypes and the level of trans-Zeatin in Sonora 64 and Leningradskaya rannyaya cvs but decreased it in AFI177 and AFI91 ultra-early lines. Interactions between the factors “genotype” and “inoculation” were significant for IAA, GA, and trans-Zeatin concentrations in wheat shoots and roots. The inoculation increased the levels of chlorophylls and carotenoids and reduced lipid peroxidation in leaves of all genotypes. The inoculation resulted in a significant increase in grain yield (by 33–62%), a reduction in the time for passing the stages of ontogenesis (by 2–3 days), and an increase in the content of macro- and microelements and protein in the grain. Early-maturing wheat genotypes showed a different response to inoculation with the bacterium Bacillus sp. V2026. Cv. Leningradskaya rannyaya was most responsive to inoculation with Bacillus sp. V2026.
Collapse
|