1
|
Boufissiou A, Kadi I, Benamar-Aissa B, Boussoussa H, Harrat M, Yousfi M. In vitro study of the antioxidant, sun factor protection, antimicrobial, and antifungal activities with molecular docking of methanolic extracts from leaves and fruit of Phillyrea angustifolia L. 3 Biotech 2024; 14:41. [PMID: 38261869 PMCID: PMC10794656 DOI: 10.1007/s13205-023-03877-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
This study aimed to evaluate the potential therapeutic effects of Phillyrea angustifolia L leaves and fruits from Algeria. The total phenolic and flavonoid contents, sun protection factor, antimicrobial, antifungal, and antioxidant activities such as DPPH, ABTS, FRAP, CUPRAC, and o-phenanthroline reduction were determined. The findings of the comparative analysis revealed that the leaves contained higher levels of total phenolic content (TPC) and flavonoid content (TFC) compared to the fruit, indicating their maximum antioxidant potential. TPC values for leaves ranged from 528.411 ± 9.94 to 816.352 ± 5.09 µg EAG/mg of dry extract, while for fruits, it ranged from 378.215 ± 5.26 to 579.392 ± 14.2 µg EAG/mg extract/ml. Similarly, TFC values for leaves varied from 65.833 ± 9.42 to 147.986 ± 5.59 µg EAG/mg of dry extract, and for fruits, it ranged from 45.486 ± 5.00 to 90.208 ± 6.77 µg EAG/mg extract/ml. Moreover, both leaves and fruit extracts showed significant growth inhibition against Staphylococcus aureus and Enterococcus faecalis, with the highest activity against Staphylococcus aureus, followed by Escherichia coli. The sun protection factor (SPF) values of both leaves and fruits extracts are close to the values of standard sunscreen VICHY. In addition, molecular docking studies identified promising compounds, including Demethyloleuropein, Luteolin-7-O-glucoside, Apigenin 7-Glucoside, Oleuropein, Pinoresinol, and Syringaresinol monoglucopyranoside of leaves from P. angustifolia L, these compounds are showing a better binding affinity than native ligands against Rhomboid protease GlpG from E. coli, the same thing about luteolin-7-O-glucoside and apigenin 7-glucoside exhibited similar binding free energy values to the target protein S. aureus sortase A. The study suggests that leaves and fruits of Phillyrea angustifolia L could be valuable sources for developing drugs against pathogenic oral yeasts, Gram-negative and Gram-positive bacteria. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03877-5.
Collapse
Affiliation(s)
- Ahmed Boufissiou
- Laboratoire des Sciences Fondamentales (LSF), University of Amar Telidji Laghouat, BP. 37G, 03000 Laghouat, Algeria
| | - Imededdine Kadi
- Research Center in Biotechnology (CRBt 2500) Constantine, El Khroub, Algeria
| | - Boualem Benamar-Aissa
- Laboratoire des Sciences Fondamentales (LSF), University of Amar Telidji Laghouat, BP. 37G, 03000 Laghouat, Algeria
| | - Hadjer Boussoussa
- Laboratoire des Sciences Fondamentales (LSF), University of Amar Telidji Laghouat, BP. 37G, 03000 Laghouat, Algeria
| | - Mohamed Harrat
- Laboratoire des Sciences Fondamentales (LSF), University of Amar Telidji Laghouat, BP. 37G, 03000 Laghouat, Algeria
| | - Mohamed Yousfi
- Laboratoire des Sciences Fondamentales (LSF), University of Amar Telidji Laghouat, BP. 37G, 03000 Laghouat, Algeria
| |
Collapse
|
2
|
Pennisi R, Trischitta P, Costa M, Venuti A, Tamburello MP, Sciortino MT. Update of Natural Products and Their Derivatives Targeting Epstein-Barr Infection. Viruses 2024; 16:124. [PMID: 38257824 PMCID: PMC10818872 DOI: 10.3390/v16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Epstein-Barr (EBV) is a human γ-herpesvirus that undergoes both a productive (lytic) cycle and a non-productive (latent) phase. The virus establishes enduring latent infection in B lymphocytes and productive infection in the oral mucosal epithelium. Like other herpesviruses, EBV expresses its genes in a coordinated pattern during acute infection. Unlike others, it replicates its DNA during latency to maintain the viral genome in an expanding pool of B lymphocytes, which are stimulated to divide upon infection. The reactivation from the latent state is associated with a productive gene expression pattern mediated by virus-encoded transcriptional activators BZLF-1 and BRLF-1. EBV is a highly transforming virus that contributes to the development of human lymphomas. Though viral vectors and mRNA platforms have been used to develop an EBV prophylactic vaccine, currently, there are no vaccines or antiviral drugs for the prophylaxis or treatment of EBV infection and EBV-associated cancers. Natural products and bioactive compounds are widely studied for their antiviral potential and capability to modulate intracellular signaling pathways. This review was intended to collect information on plant-derived products showing their antiviral activity against EBV and evaluate their feasibility as an alternative or adjuvant therapy against EBV infections and correlated oncogenesis in humans.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
| | - Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marianna Costa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, 69366 Lyon, CEDEX 07, France;
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
| |
Collapse
|
3
|
Analysis of Antioxidant and Antiviral Effects of Olive ( Olea europaea L.) Leaf Extracts and Pure Compound Using Cancer Cell Model. Biomolecules 2023; 13:biom13020238. [PMID: 36830607 PMCID: PMC9953111 DOI: 10.3390/biom13020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The present study aims to assess the antioxidant and antiviral effectiveness of leaf extracts obtained from Olea europaea L. var. sativa and Olea europaea L. var. sylvestris. The total antioxidant activity was determined via both an ammonium phosphomolybdate assay and a nitric oxide radical inhibition assay. Both extracts showed reducing abilities in an in vitro system and in human HeLa cells. Indeed, after oxidative stress induction, we found that exposition to olive leaf extracts protects human HeLa cells from lipid peroxidation and increases the concentration of enzyme antioxidants such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase. Additionally, OESA treatment affects viral DNA accumulation more than OESY, probably due to the exclusive oleuropein content. In fact, subtoxic concentrations of oleuropein inhibit HSV-1 replication, stimulating the phosphorylation of PKR, c-FOS, and c-JUN proteins. These results provide new knowledge about the potential health benefits and mechanisms of action of oleuropein and oleuropein-rich extracts.
Collapse
|
4
|
EL-Aguel A, Pennisi R, Smeriglio A, Kallel I, Tamburello MP, D’Arrigo M, Barreca D, Gargouri A, Trombetta D, Mandalari G, Sciortino MT. Punica granatum Peel and Leaf Extracts as Promising Strategies for HSV-1 Treatment. Viruses 2022; 14:v14122639. [PMID: 36560643 PMCID: PMC9782130 DOI: 10.3390/v14122639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Punica granatum is a rich source of bioactive compounds which exhibit various biological effects. In this study, pomegranate peel and leaf ethanolic crude extracts (PPE and PLE, respectively) were phytochemically characterized and screened for antioxidant, antimicrobial and antiviral activity. LC-PDA-ESI-MS analysis led to the identification of different compounds, including ellagitannins, flavonoids and phenolic acids. The low IC50 values, obtained by DPPH and FRAP assays, showed a noticeable antioxidant effect of PPE and PLE comparable to the reference standards. Both crude extracts and their main compounds (gallic acid, ellagic acid and punicalagin) were not toxic on Vero cells and exhibited a remarkable inhibitory effect on herpes simplex type 1 (HSV-1) viral plaques formation. Specifically, PPE inhibited HSV-1 adsorption to the cell surface more than PLE. Indeed, the viral DNA accumulation, the transcription of viral genes and the expression of viral proteins were significantly affected by PPE treatment. Amongst the compounds, punicalagin, which is abundant in PPE crude extract, inhibited HSV-1 replication, reducing viral DNA and transcripts accumulation, as well as proteins of all three phases of the viral replication cascade. In contrast, no antibacterial activity was detected. In conclusion, our findings indicate that Punica granatum peel and leaf extracts, especially punicalagin, could be a promising therapeutic candidate against HSV-1.
Collapse
Affiliation(s)
- Asma EL-Aguel
- Research Laboratory Toxicology-Environmental Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, P.O. Box 1171, Sfax 3000, Tunisia
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (R.P.); (G.M.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Imen Kallel
- Research Laboratory Toxicology-Environmental Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, P.O. Box 1171, Sfax 3000, Tunisia
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Manuela D’Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Ahmed Gargouri
- Research Laboratory Toxicology-Environmental Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, P.O. Box 1171, Sfax 3000, Tunisia
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (R.P.); (G.M.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Cör Andrejč D, Butinar B, Knez Ž, Tomažič K, Knez Marevci M. The Effect of Drying Methods and Extraction Techniques on Oleuropein Content in Olive Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 11:865. [PMID: 35406845 PMCID: PMC9003305 DOI: 10.3390/plants11070865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Increased demand for olive oil has caused higher quantities of byproducts in olive processing, such as olive leaves, olive skins, and vegetation water. It is well known that olive leaves contain several phenolic compounds, including secoiridoids. Oleuropein is the major secoiridoid in olive leaves. Oleuropein has been found to exhibit antioxidative, antimicrobial, antiviral, and antiatherogenic activities. We studied the effect of extraction techniques and drying methods on oleuropein content in olive leaves of Istrska belica and Lecino cultivar. Three different procedures of drying were used: at room temperature, at 105 °C, and freeze drying. Ethanol-modified supercritical extraction with carbon dioxide, conventional methanol extraction, and ultrasonic extraction with deep eutectic solvent were performed. Antioxidant activity was determined, as well as methanolic and supercritical extracts. The presence of olive polyphenols was confirmed by the HPLC method.
Collapse
Affiliation(s)
- Darija Cör Andrejč
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.C.A.); (Ž.K.); (K.T.)
| | - Bojan Butinar
- Institute for Oliveculture, Science and Research Centre Koper, SI-6000 Koper, Slovenia;
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.C.A.); (Ž.K.); (K.T.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Kaja Tomažič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.C.A.); (Ž.K.); (K.T.)
| | - Maša Knez Marevci
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.C.A.); (Ž.K.); (K.T.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|