1
|
Nawaz M, Shahzadi E, Yaseen A, Khalid MR, Saleem MH, Alalawy AI, Omran AME, Khalil FMA, Alsuwat MA, Ercisli S, Malik T, Ali B. Selenium improved arsenic toxicity tolerance in two bell pepper (Capsicum annuum L.) varieties by modulating growth, ion uptake, photosynthesis, and antioxidant profile. BMC PLANT BIOLOGY 2024; 24:799. [PMID: 39179967 PMCID: PMC11344407 DOI: 10.1186/s12870-024-05509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Bell pepper (Capsicum annuum L.); an important spice crop of the region is a rich source of vitamins and antioxidants having many health benefits. Many biotic and abiotic factors contribute towards growth and yield losses of this crop. Arsenic (As) toxicity is a global issue, but it is particularly critical in developing countries. The current study was designed to evaluate the efficacy of selenium (Se) in mitigating the toxic effects of As in two varieties (HSP-181 A and PS09979325) of Capsicum annuum L. Different concentrations of As (0, 50, and 100 µM) and Se (0, 5, and 10 µM) were tested using 14 days old seedlings of C. annuum L. The As stress caused a significant (P ≤ 0.001) reduction in growth, uptake of nutrients, and eco-physiological attributes in both varieties however, the response was specific. While the overproduction of osmo-protectants and antioxidants intensified the symptoms of oxidative stress. The maximum reduction in shoot length (45%), fresh weight (29%), and dry weight (36%) was observed in under 100 µM As stress. The organic acids exudation from the roots of both cultivars were significantly increased with the increase in As toxicity. The Se treatment significantly (p ≤ 0.001) improved growth, nutrient uptake, gas exchange attributes, antioxidant production, while decreased oxidative stress indicators, and As uptake in the roots and shoots of all the subjects under investigation. It is concluded from the results of this study that Se application increased photosynthetic efficiency and antioxidant activity while decreasing As levels, organic acid exudation, and oxidative stress indicators in plants. Overall, the var. PS09979325 performed better and may be a good candidate for future pepper breeding program.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Eram Shahzadi
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aqsa Yaseen
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rehan Khalid
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Awatif M E Omran
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Ethiopia.
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144401, India.
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- School of Science, Western Sydney University, Penrith 2751, Australia.
| |
Collapse
|
2
|
Sorrentino MC, Granata A, Cantalupo M, Manti L, Pugliese M, Giordano S, Capozzi F, Spagnuolo V. Seed Priming by Low-Dose Radiation Improves Growth of Lactuca sativa and Valerianella locusta. PLANTS (BASEL, SWITZERLAND) 2024; 13:165. [PMID: 38256719 PMCID: PMC10818939 DOI: 10.3390/plants13020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Valerian salad and lettuce are edible species that are easy to grow rapidly, and have traits useful for commercial purposes. The consumption of these species is increasing worldwide for their nutritional properties. Seed germination and seedling development are critical stages in the life cycle of plants. Seed priming, including the use of high-energy radiation, is a set of techniques based on the idea that low stress levels stimulate plant responses, thereby improving seed germination and plant growth. In this study, we evaluated in hydroponic culture (i) the germination performance; (ii) morphological traits; and (iii) antioxidant and phenol contents at different endpoints in Lactuca sativa and Valerianella locusta that were developed from seeds exposed to X-rays (1 Gy and 10 Gy doses). Under radiation, biomass production increased in both species, especially in lettuce, where also a reduction in the mean germination time occurred. Radiation increased the level of phenols during the first growth weeks, under both doses for lettuce, and only 1 Gy was required for valerian salad. The species-specific responses observed in this research suggest that the use of radiations in seed priming needs to be customized to the species.
Collapse
Affiliation(s)
- Maria Cristina Sorrentino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.C.S.); (A.G.); (M.C.); (S.G.); (V.S.)
| | - Angelo Granata
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.C.S.); (A.G.); (M.C.); (S.G.); (V.S.)
| | - Martina Cantalupo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.C.S.); (A.G.); (M.C.); (S.G.); (V.S.)
| | - Lorenzo Manti
- Department of Physics, University of Naples Federico II, 80126 Naples, Italy; (L.M.); (M.P.)
| | - Mariagabriella Pugliese
- Department of Physics, University of Naples Federico II, 80126 Naples, Italy; (L.M.); (M.P.)
| | - Simonetta Giordano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.C.S.); (A.G.); (M.C.); (S.G.); (V.S.)
| | - Fiore Capozzi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.C.S.); (A.G.); (M.C.); (S.G.); (V.S.)
| | - Valeria Spagnuolo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.C.S.); (A.G.); (M.C.); (S.G.); (V.S.)
| |
Collapse
|
3
|
Collado-González J, Carmen Piñero M, Otalora G, Lopez-Marín J, Del Amor FM. Plant growth-promoting bacteria as affected by N availability as a suitable strategy to enhance the nutritional composition of lamb's lettuce affected by global warming. Food Chem 2023; 426:136559. [PMID: 37348394 DOI: 10.1016/j.foodchem.2023.136559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Heat and nutritional stresses have a significantly effect on the accumulation of bioactive and other compounds harmful to human health, like nitrates, in green leafy vegetables like lamb's lettuce. Plant growth-promoting bacteria (PGPB) have shown to confer beneficial biochemical changes to various crops under different stresses. The hypothesis proposed here is that the combination of optimal N level (2.5 Mm, 12 mM or 20 mM of N) with the inoculation of PGPB in plants exposed to heat shock (43 °C) may be a good strategy to obtain healthier lamb's lettuce with a higher yield. Results showed that a dose of 20 mM N can be considered as overfertilization. Moreover, the inoculation of plants fed with fertilizers with reduced N and under heat stress, resulted in higher productivity and content of sugars (60 %), amino acids (94 %), nitrogen (21 %), and total phenolic compounds (30 %), and a reduced content of nitrates (27 %).
Collapse
Affiliation(s)
- Jacinta Collado-González
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain.
| | - María Carmen Piñero
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain
| | - Ginés Otalora
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain
| | - Josefa Lopez-Marín
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain
| | - Francisco M Del Amor
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain.
| |
Collapse
|
4
|
Khan Z, Thounaojam TC, Chowdhury D, Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review. PLANT GROWTH REGULATION 2023; 100:409-433. [PMID: 37197287 PMCID: PMC10036987 DOI: 10.1007/s10725-023-00988-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/24/2023] [Indexed: 05/15/2023]
Abstract
Selenium (Se), being an essential micronutrient, enhances plant growth and development in trace amounts. It also protects plants against different abiotic stresses by acting as an antioxidant or stimulator in a dose-dependent manner. Knowledge of Se uptake, translocation, and accumulation is crucial to achieving the inclusive benefits of Se in plants. Therefore, this review discusses the absorption, translocation, and signaling of Se in plants as well as proteomic and genomic investigations of Se shortage and toxicity. Furthermore, the physiological responses to Se in plants and its ability to mitigate abiotic stress have been included. In this golden age of nanotechnology, scientists are interested in nanostructured materials due to their advantages over bulk ones. Thus, the synthesis of nano-Se or Se nanoparticles (SeNP) and its impact on plants have been studied, highlighting the essential functions of Se NP in plant physiology. In this review, we survey the research literature from the perspective of the role of Se in plant metabolism. We also highlight the outstanding aspects of Se NP that enlighten the knowledge and importance of Se in the plant system. Graphical abstract
Collapse
Affiliation(s)
- Zesmin Khan
- Department of Botany, Cotton University, Guwahati, 781001 Assam India
| | | | - Devasish Chowdhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035 India
| | | |
Collapse
|
5
|
Skrypnik L, Feduraev P, Golovin A, Maslennikov P, Styran T, Antipina M, Riabova A, Katserov D. The Integral Boosting Effect of Selenium on the Secondary Metabolism of Higher Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3432. [PMID: 36559543 PMCID: PMC9788459 DOI: 10.3390/plants11243432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Selenium is a micronutrient with a wide range of functions in animals, including humans, and in microorganisms such as microalgae. However, its role in plant metabolism remains ambiguous. Recent studies of Se supplementation showed that not only does it increase the content of the element itself, but also affects the accumulation of secondary metabolites in plants. The purpose of this review is to analyze and summarize the available data on the place of selenium in the secondary metabolism of plants and its effect on the accumulation of some plant metabolites (S- and N-containing secondary metabolites, terpenes, and phenolic compounds). In addition, possible molecular mechanisms and metabolic pathways underlying these effects are discussed. It should be noted that available data on the effect of Se on the accumulation of secondary metabolites are inconsistent and contradictory. According to some studies, selenium has a positive effect on the accumulation of certain metabolites, while other similar studies show a negative effect or no effect at all. The following aspects were identified as possible ways of regulating plant secondary metabolism by Se-supplementation: changes occurring in primary S/N metabolism, hormonal regulation, redox metabolism, as well as at the transcriptomic level of secondary metabolite biosynthesis. In all likelihood, the confusion in the results can be explained by other, more complex regulatory mechanisms in which selenium is involved and which affect the production of metabolites. Further study on the involvement of various forms of selenium in metabolic and signaling pathways is crucial for a deeper understanding of its role in growth, development, and health of plants, as well as the regulatory mechanisms behind them.
Collapse
|