1
|
Fransgo K, Lin LC, Rho H. Distinct interactions of ericoid mycorrhizae and plant growth-promoting bacteria: impacts on blueberry growth and heat resilience. PLANT SIGNALING & BEHAVIOR 2024; 19:2329842. [PMID: 38493504 PMCID: PMC10950280 DOI: 10.1080/15592324.2024.2329842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Blueberries confront substantial challenges from climate change, such as rising temperatures and extreme heat, necessitating urgent solutions to ensure productivity. We hypothesized that ericoid mycorrhizal fungi (ErM) and plant growth-promoting bacteria (PGPB) would establish symbiotic relationships and increase heat stress tolerance in blueberries. A growth chamber study was designed with low (25/20°C) and high temperature (35/30°C) conditions with micropropagated blueberry plantlets inoculated with ErM, PGPB, and both. Gas exchange and chlorophyll fluorescence properties of the leaves were monitored throughout the growth. At harvest, biochemical assays and biomass analysis were performed to evaluate potential oxidative stress induced by elevated temperatures. ErM application boosted root biomass under 25/20°C conditions but did not impact photosynthetic efficiency. In contrast, PGPB demonstrated a dual role: enhancing photosynthetic capacity and reducing stomatal conductance notably under 35/30°C conditions. Moreover, PGPB showcased conflicting effects, reducing oxidative damage under 25/20°C conditions while intensifying it during 47°C heat shock. A significant highlight lies in the opposing effects of ErM and PGPB on root growth and stomatal conductance, signifying their reciprocal influence on blueberry plant behavior, which may lead to increased water uptake or reduced water use. Understanding these complex interactions holds promise for refining sustainable strategies to overcome climate challenges.
Collapse
Affiliation(s)
- Kaleb Fransgo
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Lei-Chen Lin
- Department of Forestry and Natural Resources, National Chiayi University, Chiayi, Taiwan
| | - Hyungmin Rho
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Netherway T, Bahram M. Melanized root-associated fungi: key players in plant-soil systems. Trends Microbiol 2024; 32:1190-1199. [PMID: 38987052 DOI: 10.1016/j.tim.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Melanized root-associated fungi are a group of fungi that produce melanized structures and form root associations, including different mycorrhizal and endophytic symbioses with plants. They are pervasive across terrestrial ecosystems and play an important role in the prevailing soil carbon (C) and nutrient cycling syndromes through direct and indirect mechanisms, where they may strongly modulate plant-microbe interactions and structure root and soil microbiomes. Furthermore, melanized root-associated fungi can confer on plants an enhanced ability to tolerate abiotic and biotic stressors such as drought, extreme temperatures, heavy metals, and pathogen attacks. We propose that melanized root-associated fungi are a cohesive and ecologically relevant grouping that can be an indicator of plant-soil system functioning, and considering them will advance research on plant-soil interactions.
Collapse
Affiliation(s)
- Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden; Department of Agroecology, Aarhus University, Slagelse, Denmark; Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Chen H, Song Y, Wang S, Fan K, Wang H, Mao Y, Zhang J, Xu Y, Yin X, Wang Y, Ding Z. Improved phyllosphere microbiome composition of tea plant with the application of small peptides in combination with rhamnolipid. BMC Microbiol 2023; 23:302. [PMID: 37872475 PMCID: PMC10591406 DOI: 10.1186/s12866-023-03043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Small peptides play a crucial role in plant growth and adaptation to the environment. Exogenous small peptides are often applied together with surfactants as foliar fertilizers, but the impact of small peptides and surfactants on the tea phyllosphere microbiome remains unknown. RESULTS In this study, we investigated the effects of small peptides and different surfactants on the tea phyllosphere microbiome using 16S and ITS sequencing. Our results showed that the use of small peptides reduced the bacterial diversity of the tea phyllosphere microbiome and increased the fungal diversity, while the use of surfactants influenced the diversity of bacteria and fungi. Furthermore, the addition of rhamnolipid to small peptides significantly improved the tea phyllosphere microbiome community structure, making beneficial microorganisms such as Pseudomonas, Chryseobacterium, Meyerozyma, and Vishniacozyma dominant populations. CONCLUSION Our study suggests that the combined use of small peptides and surfactants can significantly modify the tea phyllosphere microbiome community structure, particularly for beneficial microorganisms closely related to tea plant health. Thus, this preliminary study offers initial insights that could guide the application of small peptides and surfactants in agricultural production, particularly with respect to their potential for modulating the phyllosphere microbiome community in tea plant management.
Collapse
Affiliation(s)
- Hao Chen
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hui Wang
- Rizhao Tea Research Institute, Rizhao, 276827, China
| | - Yilin Mao
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Xu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinyue Yin
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
4
|
Topilina YS, Luk‘yanova EA, Glukhova LB, Shurupova MN, Gerasimchuk AL, Frank YA, Antsiferov DV. Beneficial Effect of the New Leptodophora sp. Strain on Development of Blueberry Microclones in the Process of Their Adaptation. Microorganisms 2023; 11:1406. [PMID: 37374907 PMCID: PMC10301985 DOI: 10.3390/microorganisms11061406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The paper searches for new solutions for the development of highbush blueberry orchards (Vaccinium corymbosum L. (1753)) in Western Siberia. All species of the genus Vaccinium display special symbiotic mycorrhizal associations with root systems-ericoid mycorrhiza, which essentially enhances the formation of adventitious and lateral roots. For the first time, we obtained pure cultures of micromycetes associated with the roots of wild species of the family Ericaceae in the Tomsk region, Russia. With regard to the data of molecular genetic analysis of the ITS region sequence, we selected the BR2-1 isolate based on its morphophysiological traits, which was assigned to the genus Leptodophora. Representatives of this genus typically enter into symbiotic relationships with heathers to form ericoid mycorrhizae. We studied the effect of strain BR2-1 on the development of microclones of the highbush blueberry var. Nord blue during their in vitro adaptation and showed its beneficial effect on growth and shoot formation in young plants. Experiments performed using submerged and solid-state methods showed that the most optimal method for commercial production of BR2-1 is cultivation on grain sterilized by boiling, followed by spore washing.
Collapse
Affiliation(s)
- Yulia S. Topilina
- Biological Institute, National Research Tomsk State University, Lenina Ave., 36, 634050 Tomsk, Russia; (Y.S.T.); (L.B.G.); (M.N.S.); (A.L.G.); (Y.A.F.)
- LLC Darwin, Str. Vysockogo Vladimira, 28, 634040 Tomsk, Russia;
| | | | - Lubov B. Glukhova
- Biological Institute, National Research Tomsk State University, Lenina Ave., 36, 634050 Tomsk, Russia; (Y.S.T.); (L.B.G.); (M.N.S.); (A.L.G.); (Y.A.F.)
- LLC Darwin, Str. Vysockogo Vladimira, 28, 634040 Tomsk, Russia;
| | - Margarita N. Shurupova
- Biological Institute, National Research Tomsk State University, Lenina Ave., 36, 634050 Tomsk, Russia; (Y.S.T.); (L.B.G.); (M.N.S.); (A.L.G.); (Y.A.F.)
| | - Anna L. Gerasimchuk
- Biological Institute, National Research Tomsk State University, Lenina Ave., 36, 634050 Tomsk, Russia; (Y.S.T.); (L.B.G.); (M.N.S.); (A.L.G.); (Y.A.F.)
| | - Yulia A. Frank
- Biological Institute, National Research Tomsk State University, Lenina Ave., 36, 634050 Tomsk, Russia; (Y.S.T.); (L.B.G.); (M.N.S.); (A.L.G.); (Y.A.F.)
- LLC Darwin, Str. Vysockogo Vladimira, 28, 634040 Tomsk, Russia;
| | - Dmitry V. Antsiferov
- Biological Institute, National Research Tomsk State University, Lenina Ave., 36, 634050 Tomsk, Russia; (Y.S.T.); (L.B.G.); (M.N.S.); (A.L.G.); (Y.A.F.)
- LLC Darwin, Str. Vysockogo Vladimira, 28, 634040 Tomsk, Russia;
| |
Collapse
|
5
|
Cosme M. Mycorrhizas drive the evolution of plant adaptation to drought. Commun Biol 2023; 6:346. [PMID: 36997637 PMCID: PMC10063553 DOI: 10.1038/s42003-023-04722-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Plant adaptation to drought facilitates major ecological transitions, and will likely play a vital role under looming climate change. Mycorrhizas, i.e. strategic associations between plant roots and soil-borne symbiotic fungi, can exert strong influence on the tolerance to drought of extant plants. Here, I show how mycorrhizal strategy and drought adaptation have been shaping one another throughout the course of plant evolution. To characterize the evolutions of both plant characters, I applied a phylogenetic comparative method using data of 1,638 extant species globally distributed. The detected correlated evolution unveiled gains and losses of drought tolerance occurring at faster rates in lineages with ecto- or ericoid mycorrhizas, which were on average about 15 and 300 times faster than in lineages with the arbuscular mycorrhizal and naked root (non-mycorrhizal alone or with facultatively arbuscular mycorrhizal) strategy, respectively. My study suggests that mycorrhizas can play a key facilitator role in the evolutionary processes of plant adaptation to critical changes in water availability across global climates.
Collapse
Affiliation(s)
- Marco Cosme
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Croix du sud 2, 1348, Louvain‑la‑Neuve, Belgium.
| |
Collapse
|
6
|
Lin W, Liu L, Liang J, Tang X, Shi J, Zhang L, Wu P, Lan S, Wang S, Zhou Y, Chen X, Zhao Y, Chen X, Wu B, Guo L. Changes of endophytic microbial community in Rhododendron simsii roots under heat stress and its correlation with leaf physiological indicators. Front Microbiol 2022; 13:1006686. [PMID: 36466690 PMCID: PMC9712210 DOI: 10.3389/fmicb.2022.1006686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 08/05/2023] Open
Abstract
Introduction The response mechanism of Rhododendron simsii and its endophytic microorganism to heat stress is still unclear. Methods The light incubator was used to set the temperature gradients, and the control (CK) was (day/night: 14/10 h) 25/22°C, the moderate-heat-stress (MHS) was 35/30°C and the high-heat-stress (HHS) was 40/35°C. Results Compared with CK, MHS significantly increased the contents of malondialdehyde, hydrogen peroxide, proline, and soluble sugar, as well as the activities of catalase and peroxidase in leaf, while HHS increased the activities of ascorbate peroxidase, and decreased chlorophyll content. Compared with CK, MHS reduced soil available nitrogen (N) content. Both heat stress changed the endophytic microbial community structure in roots. MHS enriched Pezicula and Paracoccus, while HHS significantly enriched Acidothermus and Haliangium. The abundance of Pezicula positively correlated with the contents of chlorophyll a and proline in leaf, and negatively correlated with soil ammonium N content. The abundance of Pezicula and Haliangium positively correlated with soluble sugar and malondialdehyde contents, respectively. Conclusions Our results suggest that root endophytic microorganisms play an important role in helping Rhododendron resisting heat stress, mainly by regulating soil N content and plant physiological characteristics.
Collapse
Affiliation(s)
- Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
| | - Jincheng Liang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
| | - Xuexiao Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
| | - Jie Shi
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin, China
| | - Li Zhang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Purui Wu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shusheng Wang
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Lushan, China
| | - Yan Zhou
- Guizhou Botanical Garden, Guiyang, China
| | | | - Ying Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
| | - Xiang Chen
- Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Binghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijin Guo
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Wei X, Zhang W, Zulfiqar F, Zhang C, Chen J. Ericoid mycorrhizal fungi as biostimulants for improving propagation and production of ericaceous plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1027390. [PMID: 36466284 PMCID: PMC9709444 DOI: 10.3389/fpls.2022.1027390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The mutualistic relationship between mycorrhizal fungi and plant roots is a widespread terrestrial symbiosis. The symbiosis enables plants to better adapt to adverse soil conditions, enhances plant tolerance to abiotic and biotic stresses, and improves plant establishment and growth. Thus, mycorrhizal fungi are considered biostimulants. Among the four most common types of mycorrhizae, arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) have been more intensively studied than ericoid mycorrhiza (ErM) and orchidaceous mycorrhiza (OrM). ErM fungi can form symbiotic relationships with plants in the family Ericaceae. Economically important plants in this family include blueberry, bilberry, cranberry, and rhododendron. ErM fungi are versatile as they are both saprotrophic and biotrophic. Increasing reports have shown that they can degrade soil organic matter, resulting in the bioavailability of nutrients for plants and microbes. ErM fungi can synthesize hormones to improve fungal establishment and plant root initiation and growth. ErM colonization enables plants to effective acquisition of mineral nutrients. Colonized plants are able to tolerate different abiotic stresses, including drought, heavy metals, and soil salinity as well as biotic stresses, such as pathogen infections. This article is intended to briefly introduce ErM fungi and document their beneficial effects on ericaceous plants. It is anticipated that the exploration of this special group of fungi will further improve our understanding of their value of symbiosis to ericaceous plants and ultimately result in the application of valuable species or strains for improving the establishment and growth of ericaceous plants.
Collapse
Affiliation(s)
- Xiangying Wei
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Wenbing Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Chunying Zhang
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai Botanical Garden, Shanghai, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| |
Collapse
|
8
|
Additions to the Knowledge of the Genus Pezicula (Dermateaceae, Helotiales, Ascomycota) in China. BIOLOGY 2022; 11:biology11101386. [PMID: 36290291 PMCID: PMC9598454 DOI: 10.3390/biology11101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary Species of the genus Pezicula are endophytes, phytopathogens, or saprobes, and some of them have biocontrol potential, promoting plant growth and resistance to environmental stress. The species diversity of Pezicula in China was reviewed. Two new species (P. ellipsoids and P. fusispora) and two new Chinese records (P. acericola and P. carpinea) were discovered using morphological and molecular approaches. Descriptions and illustrations of macroscopic and microscopic features were provided for the new and newly found taxa. Pezicula aurantiaca was excluded from the fungal catalogue of China. Together with the previously reported taxa (P. cinnamomea, P. ericae, P. heterochroma, P. magnispora, P. melanigena, P. neosporulosa, P. ocellata, P. rhizophila, P. cf. rubi, and P. subcarnea), 14 Pezicula species are currently known from China. The results provide updated information and improve our understanding of the genus. Abstract We describe two new species of Pezicula (Dermateaceae, Ascomycota), P. ellipsoides and P. fusispora, which are discovered in China. Pezicula ellipsoides sp. nov. is distinct in producing 2–3 stipitate apothecia on a basal stroma with a light yellow hymenium, broadly ellipsoid 0–1(–2)-septate ascospores, and divergent DNA sequence data. Pezicula fusispora sp. nov. is characterized by sessile apothecia, 0.3–0.8 mm in diam, a yellowish hymenium, J+ asci 135–170 × 15–21 μm, multiseptate ascospores, 33–48 × 7–10.3 μm, and growing on rotten bamboo. In addition, Pezicula acericola and P. carpinea are reported for the first time from China, and 11 Pezicula species previously reported from China are reviewed and briefly noted, of which one was a misidentified species. Phylogenetic analyses inferred from ITS nrDNA sequences confirm the placement of P. ellipsoides and P. cinnamomea in the genus Pezicula.
Collapse
|
9
|
Liu L, Lin W, Zhang L, Tang X, Liu Y, Lan S, Wang S, Zhou Y, Chen X, Wang L, Chen X, Guo L. Changes and Correlation Between Physiological Characteristics of Rhododendron simsii and Soil Microbial Communities Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:950947. [PMID: 35937338 PMCID: PMC9355081 DOI: 10.3389/fpls.2022.950947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The relationship between Rhododendron simsii and its soil microbial community under heat stress was not clear. In this study, the effects of heat stress on the physiological characteristics, soil physicochemical properties and soil microbial community structure of R. simsii were investigated. The experimental control (CK) was set as day/night (14/10 h) 25/20°C and experimental treatments were set as light heat stress (LHS) 35/30°C and high heat stress (HHS) 40/35°C. Our results showed that, compared with CK, LHS treatment significantly increased malondialdehyde, hydrogen peroxide, proline and soluble sugar contents, as well as catalase and peroxidase activities, while HHS treatment significantly increased ascorbate peroxidase activity and decreased chlorophyll content. Compared with CK, LHS treatment significantly reduced soil ammonium-nitrogen and nitrate-nitrogen content, while HHS significantly increased soil ammonium-nitrogen content. Compared with CK, both treatments changed the soil microbial community structure. For bacterial community, LHS and HHS treatment resulting in the significant enrichment of Burkholderia-Caballeronia-Paraburkholderia and Occallatibacte, respectively. For fungal community, LHS treatment resulting in the significant enrichment of Candida, Mortierella and Boothiomyces. The redundancy analysis showed that plant physiological characteristics, soil ammonium-nitrogen content were significantly correlated with the soil microbial community. Therefore, heat stress altered the soil microbial community structure, and affected the availability of soil available nitrogen, which in turn affected the physiological characteristics of R. simsii. We suggest that soil microbial community may play an important role in plant resistance to heat stress, and its mechanism deserves further study.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Zhang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xuexiao Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
| | - Yue Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shusheng Wang
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Lushan, China
| | - Yan Zhou
- Guizhou Botanical Garden, Guiyang, China
| | - Xiaochou Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Wang
- Fuzhou Qinting Lake Park Management Office, Fuzhou, China
| | - Xiang Chen
- Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Lijin Guo
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
10
|
Lou H, Guo C, Fan B, Fu R, Su H, Zhang J, Sun L. Lingonberry ( Vaccinium vitis-idaea L.) Interact With Lachnum pygmaeum to Mitigate Drought and Promote Growth. FRONTIERS IN PLANT SCIENCE 2022; 13:920338. [PMID: 35755649 PMCID: PMC9218470 DOI: 10.3389/fpls.2022.920338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 05/31/2023]
Abstract
The application of Ericoid mycorrhizal (ErM) fungi is considered to be an important strategy for increasing plant yield and drought resistance. In this study, we isolated and identified two ErM fungi that can promote the growth of lingonberry. We tried to understand the potential of these two ErM fungi to promote the growth of lingonberry and the strategies to help plants cope with water shortage. The use value of ErM fungi was evaluated by inoculating Oidiodendron maius FC (OmFC) or Lachnum pygmaeum ZL6 (LpZL6), well-watered (WW) and severe drought stress (SDS). The results showed that the mycelium of LpZL6 was denser than that of OmFC, and both ErM fungi significantly increased the biomass of lingonberry stems and roots. They also significantly increased the chlorophyll content by 65.6 and 97.8%, respectively. In addition, inoculation with LpZL6 fungi can improve drought resistance, promote root growth and increase root wet weight by 1157.6%. Drought reduced the chlorophyll content and soluble sugar content of lingonberry but increased significantly after inoculation with LpZL6. Inoculation with LpZL6 decreased lingonberry's malondialdehyde (MDA) content but increased the superoxide dismutase (SOD) activity. Overall, these results indicated that the successful coexistence of ErM fungi and lingonberry alleviated the adverse effects of drought stress through higher secondary metabolites and photosynthetic pigment synthesis.
Collapse
Affiliation(s)
- Hu Lou
- College of Life Science, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Chao Guo
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Baozhen Fan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rao Fu
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Heng Su
- School of Resources and Environmental Science, Northeast Agricultural University, Harbin, China
| | - Jie Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Long Sun
- School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|