1
|
Aydın B. Exploring the Multifaceted Health Benefits of Tripolium pannonicum: Antimicrobial, Antioxidant, and Prebiotic Properties With Phytochemical Insights. Chem Biodivers 2025; 22:e202402588. [PMID: 39665338 DOI: 10.1002/cbdv.202402588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
This study investigates the multifaceted potential of Tripolium pannonicum methanolic extract, focusing on its antimicrobial, antioxidant, and prebiotic properties alongside a comprehensive phytochemical analysis. The antioxidant capacity of the methanolic extract was demonstrated through 2,2-diphenyl-1-picrylhydrazyl radical scavenging and iron ion chelating assays, revealing an IC50 value of 0.073 mg/mL and 5.79 ± 0.04 mg/mL, respectively. Furthermore, the prebiotic activity of T. pannonicum was evaluated, showing enhanced growth of probiotic strains Lactobacillus plantarum and L. fermentum, compared to standard prebiotics, inulin, and fructooligosaccharides. The study also identified 27 bioactive phytochemical compounds in the methanolic extract, including 5-hydroxymethylfurfural and palmitic acid, which were further explored through molecular docking analyses, revealing significant interactions with the human pregnane X receptor. These findings underscore the potential of T. pannonicum as a sustainable health solution in both agricultural and medicinal contexts, warranting further exploration of its therapeutic applications and mechanisms of action.
Collapse
Affiliation(s)
- Betül Aydın
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Sánchez-Hernández E, Cáceres-González C, Peña-Delgado V, García-Valdecasas Medina JI, Casao A, Valdez-Ayala S, Pérez-Pe R, Martín-Gil J, Martín-Ramos P. Proximate analysis and GC-MS phytochemical profiling of aqueous extracts of Doryopteris raddiana, a plant used by the Mbya-Guaraní as a contraceptive. Nat Prod Res 2024:1-8. [PMID: 38742440 DOI: 10.1080/14786419.2024.2352869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Doryopteris raddiana (Presl) Fée, a traditional contraceptive in Mbya culture, lacks scientific scrutiny regarding its chemical composition and contraceptive efficacy. Employing X-ray fluorescence, Fourier-transform infrared spectroscopy, and thermal analysis, we explored the plant's organs. Multielemental analysis excluded toxic elements. Key phytoconstituents identified by gas chromatography-mass spectrometry in the extracts obtained through infusion were glycerine, 1,3-dimethyl propane, and catechol in leaves; glycerine, cis-13-octadecenoic acid methyl ester, and 2-deoxy-D-erythro-pentose in stems and roots. Among these chemicals, glycerine emerged as the sole constituent with contraceptive potential, particularly intravaginally. Extract activity tests conducted on ram spermatozoa exhibited a reduction in the percentage of rapid spermatozoa but no significant impact on total motility, progressive motility, or viability. The reported data would only weakly support the advocated contraceptive action of this fern upon vaginal application, not through the oral administration of its decoction.
Collapse
Affiliation(s)
- E Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Palencia, Spain
| | - C Cáceres-González
- Escuela de Posgrado, Universidad Nacional de Itapúa, Encarnación, Paraguay
- Departament of Sociology and Social Work, Facultad de Ciencias del Trabajo, Universidad de Valladolid, Palencia, Spain
| | - V Peña-Delgado
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - J I García-Valdecasas Medina
- Departament of Sociology and Social Work, Facultad de Ciencias del Trabajo, Universidad de Valladolid, Palencia, Spain
| | - A Casao
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - S Valdez-Ayala
- Centro de Estudios Rurales Interdisciplinarios - CERI, Asunción, Paraguay
| | - R Pérez-Pe
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - J Martín-Gil
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Palencia, Spain
| | - P Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Palencia, Spain
| |
Collapse
|
3
|
Esteban-Herrero G, Álvarez B, Santander RD, Biosca EG. Screening for Novel Beneficial Environmental Bacteria for an Antagonism-Based Erwinia amylovora Biological Control. Microorganisms 2023; 11:1795. [PMID: 37512967 PMCID: PMC10383364 DOI: 10.3390/microorganisms11071795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Erwinia amylovora, the bacterial species responsible for fire blight, causes major economic losses in pome fruit crops worldwide. Chemical control is not always effective and poses a serious threat to the environment and human health. Social demands for eco-sustainable and safe control methods make it necessary to search for new biocontrol strategies such as those based on antagonists. A bacterial collection from different fire blight-free Mediterranean environments was tested for antagonistic activity against Spanish strains of E. amylovora. Antagonistic assays were carried out in vitro in culture medium and ex vivo in immature loquat and pear fruits. Results revealed that 12% of the 82 bacterial isolates tested were able to inhibit the growth of several strains of the pathogen. Some of the isolates also maintained their antagonistic activity even after chloroform inactivation. Selected isolates were further tested ex vivo, with several of them being able to delay and/or reduce fire blight symptom severity in both loquats and pears and having activity against some E. amylovora strains. The isolates showing the best antagonism also produced different hydrolases linked to biocontrol (protease, lipase, amylase, and/or DNAse) and were able to fix molecular nitrogen. Based on this additional characterization, four biocontrol strain candidates were further selected and identified using MALDI-TOF MS. Three of them were Gram-positive bacteria belonging to Bacillus and Paenarthrobacter genera, and the fourth was a Pseudomonas strain. Results provide promising prospects for an improvement in the biological control strategies against fire blight disease.
Collapse
Affiliation(s)
| | - Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Departamento de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28805 Madrid, Spain
| | - Ricardo D Santander
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Elena G Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| |
Collapse
|
4
|
Phytochemical Profiling of Sambucus nigra L. Flower and Leaf Extracts and Their Antimicrobial Potential against Almond Tree Pathogens. Int J Mol Sci 2023; 24:ijms24021154. [PMID: 36674670 PMCID: PMC9866908 DOI: 10.3390/ijms24021154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Despite extensive research on the chemical composition of elderberries and their numerous uses in pharmaceutical, beverage, and food production, there is still a lack of knowledge about Sambucus nigra leaves and flowers' antimicrobial activity against plant pathogens. In this study, the phytoconstituents of their aqueous ammonia extracts were first characterized by infrared spectroscopy and gas chromatography-mass spectrometry. The major phytocompounds identified in the flower extract were octyl 2-methylpropanoate; 3,5-dihydroxy-6-methyl-2,3-dihydropyran-4-one; propyl malonic acid; adenine; and 1-methyl-2-piperidinemethanol. Concerning the leaf extract, 1,6-anhydro-β-D-glucopyranose; oleic acid; 2,1,3-benzothiadiazole; 2,3-dihydro-benzofuran; and 4-((1E)-3-hydroxy-1-propenyl)-2-methoxyphenol and other phenol derivatives were the main constituents. The potential of the extracts to act as bioprotectants was then investigated against three almond tree pathogens: Diaporthe amygdali, Phytophthora megasperma, and Verticillium dahliae. In vitro tests showed higher activity of the flower extract, with EC90 values in the 241-984 μg·mL-1 range (depending on the pathogen) vs. 354-1322 μg·mL-1 for the leaf extract. In addition, the flower extract led to full protection against P. megasperma at a dose of 1875 μg·mL-1 in ex situ tests on artificially-infected excised almond stems. These inhibitory concentrations were lower than those of commercial fungicides. These findings suggest that S. nigra aerial organs may be susceptible to valorization as an alternative to synthetic fungicides for the protection of this important crop.
Collapse
|
5
|
Santiago-Aliste A, Sánchez-Hernández E, Langa-Lomba N, González-García V, Casanova-Gascón J, Martín-Gil J, Martín-Ramos P. Multifunctional Nanocarriers Based on Chitosan Oligomers and Graphitic Carbon Nitride Assembly. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8981. [PMID: 36556785 PMCID: PMC9785438 DOI: 10.3390/ma15248981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this study, a graphitic carbon nitride and chitosan oligomers (g-C3N4−COS) nanocarrier assembly, which was obtained by cross-linking with methacrylic anhydride (MA), was synthesized and characterized. Its characterization was carried out using infrared spectroscopy, elemental and thermal analyses, and transmission electron microscopy. The new nanocarriers (NCs), with an average particle size of 85 nm in diameter and a 0.25 dispersity index, showed photocatalytic activity (associated with the g-C3N4 moiety), susceptibility to enzymatic degradation (due to the presence of the COS moiety), and high encapsulation and moderate-high release efficiencies (>95% and >74%, respectively). As a proof of concept, the visible-light-driven photocatalytic activity of the NCs was tested for rhodamine B degradation and the reduction of uranium(VI) to uranium(IV). Regarding the potential of the nanocarriers for the encapsulation and delivery of bioactive products for crop protection, NCs loaded with Rubia tinctorum extracts were investigated in vitro against three Vitis vinifera phytopathogens (viz. Neofusicoccum parvum, Diplodia seriata, and Xylophilus ampelinus), obtaining minimum inhibitory concentration values of 750, 250, and 187.5 µg·mL−1, respectively. Their antifungal activity was further tested in vivo as a pruning wound protection product in young ‘Tempranillo’ grapevine plants that were artificially infected with the two aforementioned species of the family Botryosphaeriaceae, finding a significant reduction of the necrosis lengths in the inner woody tissues. Therefore, g-C3N4-MA-COS NCs may be put forward as a multifunctional platform for environmental and agrochemical delivery applications.
Collapse
Affiliation(s)
- Alberto Santiago-Aliste
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Natalia Langa-Lomba
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
- Plant Protection Unit, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Vicente González-García
- Plant Protection Unit, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - José Casanova-Gascón
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| | - Jesús Martín-Gil
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| |
Collapse
|
6
|
Sánchez-Hernández E, González-García V, Casanova-Gascón J, Barriuso-Vargas JJ, Balduque-Gil J, Lorenzo-Vidal B, Martín-Gil J, Martín-Ramos P. Valorization of Quercus suber L. Bark as a Source of Phytochemicals with Antimicrobial Activity against Apple Tree Diseases. PLANTS (BASEL, SWITZERLAND) 2022; 11:3415. [PMID: 36559527 PMCID: PMC9785260 DOI: 10.3390/plants11243415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Cork, an anatomic adaptation of the bark of Quercus suber L. through its suberization process, finds its main application in the production of bottle stoppers. Its processing results in a large waste stream of cork fragments, granulates, and dust, which may be susceptible to valorization. The work presented here explored the use of its extracts to inhibit the growth of phytopathogenic microorganisms associated with apple tree diseases. The in vitro antimicrobial activity of cork aqueous ammonia extract was assayed against four fungi, viz. Monilinia fructigena and M. laxa (brown rot), Neofussicoccum parvum (dieback), and Phytophthora cactorum (collar and root rot), and two bacteria, viz. Erwinia amylovora and Pseudomonas syringae pv. syringae, either alone or in combination with chitosan oligomers (COS). Effective concentration values of EC90 in the 675-3450 μg·mL-1 range, depending on the fungal pathogen, were obtained in growth inhibition tests, which were substantially improved for the conjugate complexes (340-801 μg·mL-1) as a result of strong synergism with COS. Similar enhanced behavior was also observed in antibacterial activity assays, with MIC values of 375 and 750 μg·mL-1 for the conjugate complexes against P. syringae pv. syringae and E. amylovora, respectively. This in vitro inhibitory activity was substantially higher than those exhibited by azoxystrobin and fosetyl-Al, which were tested for comparison purposes, and stood out among those reported for other natural compounds in the literature. The observed antimicrobial activity may be mainly attributed to the presence of glycerin and vanillic acid, identified by gas chromatography-mass spectroscopy. In the first step towards in-field application, the COS-Q. suber bark extract conjugate complex was further tested ex situ against P. cactorum on artificially inoculated excised stems of the 'Garnem' almond rootstock, achieving high protection at a dose of 3750 μg·mL-1. These results suggest that cork industrial leftovers may, thus, be a promising source of bioactive compounds for integrated pest management.
Collapse
Affiliation(s)
- Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Vicente González-García
- Department of Agricultural, Forestry and Environmental Systems, Agrifood Research and Technology Centre of Aragón, Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - José Casanova-Gascón
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| | - Juan J. Barriuso-Vargas
- AgriFood Institute of Aragon (IA2), CITA-Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Joaquín Balduque-Gil
- AgriFood Institute of Aragon (IA2), CITA-Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Belén Lorenzo-Vidal
- Servicio de Microbiología, Hospital Universitario Rio Hortega, Calle Dulzaina 2, 47012 Valladolid, Spain
| | - Jesús Martín-Gil
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| |
Collapse
|
7
|
Leesombun A, Sariya L, Taowan J, Nakthong C, Thongjuy O, Boonmasawai S. Natural Antioxidant, Antibacterial, and Antiproliferative Activities of Ethanolic Extracts from Punica granatum L. Tree Barks Mediated by Extracellular Signal-Regulated Kinase. PLANTS (BASEL, SWITZERLAND) 2022; 11:2258. [PMID: 36079640 PMCID: PMC9460874 DOI: 10.3390/plants11172258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 05/02/2023]
Abstract
The nonedible parts of the pomegranate plant, such as tree barks and fruit peels, have pharmacological properties that are useful in traditional medicine. To increase their value, this study aimed to compare the antioxidative and antibacterial effects of ethanolic extracts from pomegranate barks (PBE) and peels (PPE). The antiproliferative effects on HeLa and HepG2 cells through the extracellular signal-regulated kinase pathway were also evaluated. The results indicated that the total amounts of phenolics and flavonoids of PBE and PPE were 574.64 and 242.60 mg equivalent gallic acid/g sample and 52.98 and 23.08 mg equivalent quercetin/g sample, respectively. Gas chromatography−mass spectrometry revealed that 5-hdroxymethylfurfural was the major component of both PBE (23.76%) and PPE (33.19%). The 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical scavenging capacities of PBE and PPE, in terms of the IC50 value, were 4.1 and 9.6 µg/mL, respectively. PBE had a greater potent antibacterial effect against Escherichia coli, Staphylococcus aureus, Salmonella Enteritidis, and S. Typhimurium. PBE and PPE (1000 µg/mL) had exhibited no cytotoxic effects on LLC-MK2. PBE and PPE (250 and 1000 µg/mL, respectively) treatments were safe for BHK-21. Both extracts significantly inhibited HepG2 and HeLa cell proliferations at 10 and 50 µg/mL, respectively (p < 0.001). The results indicated that PBE and PPE have remarkable efficiencies as free radical scavengers and antibacterial agents, with PBE exhibiting greater efficiency. The inhibitory effects on HepG2 might be through the modulation of the ERK1/2 expression. PBE and PPE have the potential for use as optional supplementary antioxidative, antibacterial, and anticancer agents.
Collapse
Affiliation(s)
- Arpron Leesombun
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jarupha Taowan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chowalit Nakthong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Orathai Thongjuy
- The Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sookruetai Boonmasawai
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|