1
|
Assouguem A, Joutei AB, Lahlali R, Kara M, Bari A, Ali EA, Fidan H, Laabidine HZ, El Ouati Y, Farah A, Lazraq A. Evaluation of the impact of two citrus plants on the variation of Panonychus citri (Acari: Tetranychidae) and beneficial phytoseiid mites. Open Life Sci 2024; 19:20220837. [PMID: 38585628 PMCID: PMC10997146 DOI: 10.1515/biol-2022-0837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
The abundance of Panonychus citri McGregor 1916 (Acari: Tetranychidae) and its associated enemies (Euseius stipulatus Athias-Henriot, 1960; Typhlodromus sp.; Phytoseiulus persimilis Athias-Henriot, 1957) was studied on two 12-year-old citrus cultivars, specifically Clementine "Nules" (Citrus Clementina) and Valencia (Citrus sinensis), in the Gharb region of Morocco. Throughout the entire monitoring period in the Valencia late cultivar, the density of the spider mite P. citri on leaves was notably higher at 38.0% (n = 1,212 mobile forms). Predator P. persimilis exhibited a leaf occupancy of 25.0% (n = 812), followed by Typhlodromus sp. at 20.0% (n = 643). Conversely, the abundance of E. stipulatus was lower at 17.0% (n = 538). In the Nules variety, P. citri abundance recorded a higher percentage at 48.0% (n = 1,922). E. stipulatus emerged as the most abundant predator at 23.0% (n = 898), followed by P. persimilis with 16.0% (n = 639). Meanwhile, the population of Typlodromus sp. remained notably low at 13.0% (n = 498). Regarding the fluctuation of the different mites studied on the two cultivars across monitoring dates, the period from May 4 to June 1 was characterized by low temperatures and a diminished presence of mite populations (P. citri, E. stipulatus, Typhlodromus sp., and P. persimilis). However, from June 7 to June 19, characterized by high temperatures, a notable increase in the presence of mite populations was observed. As regards the effect of the variety on the different mites studied, the varietal impact was significant.
Collapse
Affiliation(s)
- Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez, Morocco
- Department of Protection of Plants and Environment, National School of Agriculture, Meknes, Morocco
| | | | - Rachid Lahlali
- Department of Protection of Plants and Environment, National School of Agriculture, Meknes, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Natural Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdallah University, BP 1796 Atlas, Fez30000, Morocco
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafize Fidan
- Department of Tourism and Culinary Management, Faculty of Economics, University of Food Technologies, Plovdiv, Bulgaria
| | - Hajar Zine Laabidine
- Laboratory of Biotechnology, the Law, Philosophy and Society Laboratory (ESSOR), The Faculty of Law, Economic and Social Sciences, Sidi Mohamed Ben Abdallah University, BP 1796 Atlas, Fez30000, Morocco
| | - Younouss El Ouati
- Laboratory of Biotechnology, the Law, Philosophy and Society Laboratory (ESSOR), The Faculty of Law, Economic and Social Sciences, Sidi Mohamed Ben Abdallah University, BP 1796 Atlas, Fez30000, Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, FezP.O. Box 2202, Morocco
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez, Morocco
| |
Collapse
|
2
|
Šunjka D, Mechora Š. Advances in Alternative Measures in Plant Protection. PLANTS (BASEL, SWITZERLAND) 2023; 12:805. [PMID: 36840151 PMCID: PMC9959152 DOI: 10.3390/plants12040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Food production, along with the constant demand for higher yields, is an imperative of contemporary agricultural production [...].
Collapse
Affiliation(s)
- Dragana Šunjka
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Špela Mechora
- Agency for Radwaste Management, Litostrojska 58A, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Popova V, Ivanova T, Stoyanova M, Mazova N, Dimitrova-Dyulgerova I, Stoyanova A, Ercisli S, Assouguem A, Kara M, Topcu H, Farah A, Elossaily GM, Shahat AA, Shazly GA. Phytochemical analysis of leaves and stems of Physalis alkekengi L. (Solanaceae). OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Physalis alkekengi L. (Solanaceae) is encountered in different regions of Bulgaria as a wild growing or ornamental plant. The objective of this work was to characterize the phytochemical composition (macro and micro components) of the leaves and stems of two local phenotypes (PA-SB and PA-NB), with the view of revealing their use potential. The dry leaves contained (DW) protein (16.25 and 19.27%), cellulose (25.16 and 25.31%), and ash (18.28 and 16.16%) and the stems contained protein (6.83 and 7.35%), cellulose (39.34 and 38.25%), and ash (15.01 and 7.48%) for PA-SB and PA-NB, respectively. The dominant amino acids (by HPLC) in the leaves of both phenotypes were arginine (21.3–22.3 mg/g) and aspartic acid (8.8–18.4 mg/g), and those in the stems were proline and aspartic acid for PA-SB (8.8, 7.7 mg/g); isoleucine and tyrosine for PA-NB (12.8, 6.6 mg/g). Mineral elements, determined by AAS (K, Ca, Mg, Na, Cu, Fe, Zn, Mn, Pb, Cr), also varied between phenotypes and plant parts. The leaves alone were further processed by extraction with n-hexane, for the identification of leaf volatiles (by gas chromatography-mass spectrometry). The analysis identified 28 components (97.99%) in the leaf extract of PA-SB and 32 components (97.50%) in that of PA-NB. The volatile profile of PA-SB leaves was dominated by diterpenes (49.96%) and oxygenated sesquiterpenes (35.61%), while that of PA-NB was dominated by oxygenated aliphatics (40.01%) and diterpenes (35.19%). To the best of our knowledge, the study provides the first data about the phytochemical composition of the leaves and stems of P. alkekengi from Bulgaria, in a direct comparison of phenotypes from two distinct wild populations, which could be of further scientific interest.
Collapse
Affiliation(s)
- Venelina Popova
- Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Tanya Ivanova
- Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Magdalena Stoyanova
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Nadezhda Mazova
- Department of Engineering Ecology, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Ivanka Dimitrova-Dyulgerova
- Department of Botany and Methods of Biology Teaching, Faculty of Biology, University of Plovdiv “Paisii Hilendarski” , 24 Tzar Assen Str ., 4000 Plovdiv , Bulgaria
| | - Albena Stoyanova
- Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University , 25240 Erzurum , Turkey
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Department of Biology, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University , Imouzzer Street , Fez P.O. Box 2202 , Morocco
- Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University , Imouzzer Street , Fez P.O. Box 2202 , Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Natural Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdallah University , Fez 30000 , Morocco
| | - Hayat Topcu
- Agricultural Biotechnology Department, Faculty of Agriculture, Namik Kemal University , 59030 Tekirdag , Turkey
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University , Imouzzer Street , Fez P.O. Box 2202 , Morocco
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University , P.O. Box 71666 , Riyadh 11597 , Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy (Medicinal, Aromatic and Poisonous Plants Research Center), College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
- Chemistry of Medicinal Plants Department, National Research Centre , 33 EI-Bohouth st , Dokki , Giza 12622 , Egypt
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
| |
Collapse
|
4
|
Ouattar H, Zouirech O, Kara M, Assouguem A, Almutairi SM, Al-Hemaid FM, Rasheed RA, Ullah R, Abbasi AM, Aouane M, Mikou K. In Vitro Study of the Phytochemical Composition and Antioxidant, Immunostimulant, and Hemolytic Activities of Nigella sativa (Ranunculaceae) and Lepidium sativum Seeds. Molecules 2022; 27:5946. [PMID: 36144678 PMCID: PMC9505328 DOI: 10.3390/molecules27185946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Moroccan flora abounds and is an important reserve of medicinal plants. Nigella sativa and Lepidium sativum are plants that are widely used in traditional medicine for their multiple therapeutic properties. The current study aims to highlight the biological activities that can justify and valorize the use of these plants. Flavonoids, total phenols, condensed tannins, and sugars were determined. The biological activities tested were antioxidant by determining the IC50 (defined as the concentration of an antioxidant required to decrease the initial concentration by 50%; inversely related to the antioxidant capacity), hemagglutination, and hemolytic activities. Phytochemical quantification of the seed extracts indicated that the total phenol content was largely similar for both plants and in the order of 10 mg GAE (Gallic acid equivalent)/g. On the other hand, L. sativum seeds registered a higher content of flavonoids (3.09 ± 0.04 mg QE (quercetin equivalent)/g) as compared to Nigella saliva (0.258 ± 0.058). Concerning condensed tannins, N. saliva seeds present a higher amount with a value of 7.2 ± 0.025 mg/g as compared to L. sativum (1.4 ± 0.22 mg/g). Concerning the total sugar content, L. sativum shows a higher content (67.86 ± 0.87 mg/g) as compared to N. sativa (58.17 ± 0.42 mg/g); it is also richer in mucilage with a content of 240 mg as compared to 8.2 mg for N. saliva. Examination of the antioxidant activity using a DPPH (2.2-diphenyl 1-pycrilhydrazyl) test revealed that the EButOH (n-butanol extract) and EAE (ethyl acetate extract) extracts were the most active, with IC50 values of 48.7 and 50.65 μg/mL for the N. sativa extracts and 15.7 and 52.64 μg/mL for the L. sativum extracts, respectively. The results of the hemagglutination activity of the different extracts of the two plants prepared in the PBS (phosphate-buffered saline) medium showed significant agglutination for the L. sativum extract (1/50) compared to the N. sativa extract (1/20). An evaluation of the hemolytic effect of the crude extract of the studied seeds on erythrocytes isolated from rat blood incubated in PBS buffer compared to the total hemolysis induced by distilled water showed a hemolysis rate of 54% for Nigella sativa and 34% for L. sativum. In conclusion, the two plants studied in the current work exhibited high antioxidant potential, which could explain their beneficial properties.
Collapse
Affiliation(s)
- Hafssa Ouattar
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, University of Ibn Tofail, P.O. Box 133, Kenitra 14000, Morocco
| | - Otmane Zouirech
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P.O. Box 3000, Fez 30000, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fahad M. Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rabab Ahmed Rasheed
- Histology and Cell Biology Department, Faculty of Medicine, King Salman International University, El Tor 46612, Egypt
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan or
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Italy
| | - Mahjoub Aouane
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, University of Ibn Tofail, P.O. Box 133, Kenitra 14000, Morocco
| | - Karima Mikou
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| |
Collapse
|
5
|
Evaluation of the Effect of Four Bioactive Compounds in Combination with Chemical Product against Two Spider Mites Tetranychus urticae and Eutetranychus orientalis(Acari: Tetranychidae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2004623. [PMID: 36045652 PMCID: PMC9423970 DOI: 10.1155/2022/2004623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Currently, pests control using chemical acaricides constitutes worries for ecologists and health care people as these chemical products create damage to the ecosystem as well as the development of spider mites resistance. Such concerns request deep and rapid feedback by looking for new alternative and eco-friendly methods. In recent years, a new field is evolving in the use of essential oils in pest management practices. Essential oils have been considered as potential pest management agents, because they demonstrate to have a broad range of bioactivity, possess contact, and fumigant toxicity. In addition, the major advantages of many plant-based acaricides lie in their low toxicity to agroecosystems. Botanical acaricides composed of essential oils may prove to be a good choice for the more persistent synthetic acaricides. In this study, the acaricidal effect of four plant-derived essential oils against adults of the two important crop pests, Tetranychus urticae (Koch) 1836 and Eutetranychus orientalis (Klein) 1936 are studied. The fumigant toxicity revealed that all the essential oils tested Mentha pulegium L., Lavandula stoechas L., Rosmarinus officinalis L., and Origanum compactum Benth (Lamiaceae family) displayed an acaricidal effect. At the highest dose (625 µl/ml), mortalities recorded were found between 91 and 98% and 92 and 99% at 24 and 48 h, respectively, for T. urticae, and between 90 and 98% and 94 and 99% at 24 and 48 h, respectively, for E. orientalis. The M. pulegium L. essential oil represents the highest activity against E. orientalis and T. urticae. For the binary combination between the EOs (essential oils) and the acaricide based on the active ingredient acequinocyl, the results showed that the mixture of O. compactum EO (essential oil) + acequinocyl exhibited an important acaricidal effect on T. urticae and E. orientalis with 99% at 24 h and 100% at 48 h of mortality, followed by M. pulegium EO + acequinocyl with 92% at 24 h and 95% at 48 h for T. urticae as well as 99% at 24 h and 100% at 48 h for E. orientalis of mortality. Whereas, the mixture of L. stoechas EO + acequinocyl presented the lowest activity against T. urticae and E. orientalis with 82–87% at 24 h and 86–90% at 48 h, respectively. The mixtures (M. pulegium EO + acequinocyl, R. officinalis EO + acequinocyl, and O. compactum EO + acequinocyl) exerted a high acaricidal effect against E. orientalis. These promising results could help to develop botanical pesticides that could be used in integrated pest management.
Collapse
|