1
|
Aryal M. Phytoremediation strategies for mitigating environmental toxicants. Heliyon 2024; 10:e38683. [PMID: 39430524 PMCID: PMC11490803 DOI: 10.1016/j.heliyon.2024.e38683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
In natural environments, persistent pollutants such as heavy metals and organic compounds, are frequently sequestered in sediments, soils, and mineral deposits, rendering them biologically unavailable. This study examines phytoremediation, a sustainable technology that uses plants to remove pollutants from soil, water, and air. It discusses enhancing techniques such as plant selection, the use of plant growth-promoting bacteria, soil amendments, and genetic engineering. The study highlights the slow removal rates and the limited availability of plant species that are effective for specific pollutants. Furthermore, it investigates bioavailability and the mechanisms underlying root exudation and hyperaccumulation. Applications across diverse environments and innovative technologies, such as transgenic plants and nanoparticles, are also explored. Additionally, the potential for phytoremediation with bioenergy production is considered. The purpose of this study is to provide researchers, practitioners, and policymakers with valuable resources for sustainable solutions.
Collapse
Affiliation(s)
- Mahendra Aryal
- Department of Chemistry, Tribhuvan University, Tri-Chandra Campus, Kathmandu, 44600, Nepal
| |
Collapse
|
2
|
Sanjana S, Jazeel K, Janeeshma E, Nair SG, Shackira AM. Synergistic interactions of assorted ameliorating agents to enhance the potential of heavy metal phytoremediation. STRESS BIOLOGY 2024; 4:13. [PMID: 38363436 PMCID: PMC10873264 DOI: 10.1007/s44154-024-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Pollution by toxic heavy metals creates a significant impact on the biotic community of the ecosystem. Nowadays, a solution to this problem is an eco-friendly approach like phytoremediation, in which plants are used to ameliorate heavy metals. In addition, various amendments are used to enhance the potential of heavy metal phytoremediation. Symbiotic microorganisms such as phosphate-solubilizing bacteria (PSB), endophytes, mycorrhiza and plant growth-promoting rhizobacteria (PGPR) play a significant role in the improvement of heavy metal phytoremediation potential along with promoting the growth of plants that are grown in contaminated environments. Various chemical chelators (Indole 3-acetic acid, ethylene diamine tetra acetic acid, ethylene glycol tetra acetic acid, ethylenediamine-N, N-disuccinic acid and nitrilotri-acetic acid) and their combined action with other agents also contribute to heavy metal phytoremediation enhancement. With modern techniques, transgenic plants and microorganisms are developed to open up an alternative strategy for phytoremediation. Genomics, proteomics, transcriptomics and metabolomics are widely used novel approaches to develop competent phytoremediators. This review accounts for the synergistic interactions of the ameliorating agent's role in enhancing heavy metal phytoremediation, intending to highlight the importance of these various approaches in reducing heavy metal pollution.
Collapse
Affiliation(s)
- S Sanjana
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - K Jazeel
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - E Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Sarath G Nair
- Department of Botany, Mar Athanasius College, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India.
| |
Collapse
|
3
|
Miranzadeh MB, Bashardoust P, Atoof F, Rezvani Ghalhari M, Mostafaeii G, Rabbani D, Alimohammadi M, Rahmani H, Ghadami F. Effect of salinity on the potential cadmium phytoremediation from the polluted soil by carpobrotus rossii. Heliyon 2023; 9:e13858. [PMID: 36895380 PMCID: PMC9988476 DOI: 10.1016/j.heliyon.2023.e13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Nowadays, toxic metals accumulation in soil texture due to anthropogenic activities is a major form of pollution, which can lead to worldwide concerns; however, there are many treatment methods to remove them from soil such as phytoremediation. The carpobrotus rossii, has shown great potential to tolerate high salinity and accumulate Cd from contaminated soils. The experiments, in this study, are analyzed and optimized by Central Composite Design (CCD) as method and using Response Surface Methodology (RSM) package in R software. The Cd removal by root and the whole plant followed the quadratic model and the R2 values were 94.95 and 94.81, respectively. The results showed that a decrease in NaCl concentration in Cd-containing solution can increase the phytoremediation process of Cd by carpobrotus rossii, significantly. The optimum conditions for 58% Cd removal by the whole plant, predicted through a CCD response surface methodology model were as follows: initial Cd concentration of 49 mgKg-1,NaCl concentration of 16 dSm-1, time of 17 days, and pH of 6.5. C. rossii's potential in removing 58% of Cd under the obtained optimum condition from the modelling was evaluated in real condition in the laboratory. The results revealed that around 56% of the initial added Cd concentration was removed by carpobrotus rossii. As a take home message, carpobrotus rossii can be recommended as an efficient plant to remove heavy metals especially cadmium from soil and sediments in arid area which have a salty soil.
Collapse
Affiliation(s)
- Mohammad Bagher Miranzadeh
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Parnia Bashardoust
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atoof
- Department of Biostatistics & Epidemiology, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Mostafaeii
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.,Health Equity Research Center (HERC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Rahmani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Faezeh Ghadami
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Effects of Biofuel Crop Switchgrass ( Panicum virgatum) Cultivation on Soil Carbon Sequestration and Greenhouse Gas Emissions: A Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122105. [PMID: 36556470 PMCID: PMC9781985 DOI: 10.3390/life12122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Under the macroenvironmental background of global warming, all countries are working to limit climate change. Internationally, biofuel plants are considered to have great potential in carbon neutralization. Several countries have begun using biofuel crops as energy sources to neutralize carbon emissions. Switchgrass (Panicum virgatum) is considered a resource-efficient low-input crop that produces bioenergy. In this paper, we reviewed the effects of switchgrass cultivation on carbon sequestration and greenhouse gas (GHG) emissions. Moreover, the future application and research of switchgrass are discussed and prospected. Switchgrass has huge aboveground and underground biomass, manifesting its huge carbon sequestration potential. The net change of soil surface 30 cm soil organic carbon in 15 years is predicted to be 6.49 Mg ha-1, significantly higher than that of other crops. In addition, its net ecosystem CO2 exchange is about -485 to -118 g C m-2 yr-1, which greatly affects the annual CO2 flux of the cultivation environment. Nitrogen (N) fertilizer is the main source of N2O emission in the switchgrass field. Nitrogen addition increases the yield of switchgrass and also increases the N2O flux of switchgrass soil. It is necessary to formulate the most appropriate N fertilizer application strategy. CH4 emissions are also an important indicator of carbon debt. The effects of switchgrass cultivation on CH4 emissions may be significant but are often ignored. Future studies on GHG emissions by switchgrass should also focus on CH4. In conclusion, as a biofuel crop, switchgrass can well balance the effects of climate change. It is necessary to conduct studies of switchgrass globally with the long-term dimension of climate change effects.
Collapse
|