1
|
Mayorga-Gomez AM, van Iersel MW, Ferrarezi RS. Lowering the target daily light integrals following days with excessive lighting can reduce lettuce production costs. FRONTIERS IN PLANT SCIENCE 2024; 15:1467443. [PMID: 39719936 PMCID: PMC11667103 DOI: 10.3389/fpls.2024.1467443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/06/2024] [Indexed: 12/26/2024]
Abstract
Given the fluctuating availability of natural lighting throughout the year, supplemental light is frequently employed to maintain the optimal daily light integral (DLI) levels necessary for adequate plant growth. However, the use of supplemental light translates into higher operational costs. Recent reports suggest that plants can tolerate a day with low DLI following exposure to a day with high DLI from natural light. This was referred to as the 'carryover' effect. In such cases, supplemental lighting may not be necessary, resulting in energy savings. In this study, we determined if plants can withstand such DLI fluctuations over multiple days without compromising plant growth. Additionally, we calculated the energy requirements for trese treatments to evaluate the potential energy savings of the carryover effect. To test this, we cultivated lettuce plants (Lactuca sativa cv. 'Waldmand's Dark Green' and 'Rouxai') in a walk-in grow chamber, subjecting them to six different lighting treatments. Each treatment consisted of a day with a high DLI of 22.5 mol·m-2·d-1 followed by a varying number of consecutive days with low DLI, ranging from 1 to 5 days, with DLIs of 7.5, 11.25, 12.5, 13.13, and 13.5 mol·m-2·d-1 respectively. The combined DLI for each treatment, calculated as the average DLI across high and low DLI days, was maintained at 15 mol·m-2·d-1. Additionally, we included a control treatment where plants were exposed to a constant DLI of 15 mol·m-2·d-1. We measured plant growth rate, final fresh and dry weights, leaf number, leaf area, specific leaf area, light use efficiency, and relative pigment content to assess differences in plant growth under the different lighting regimes. We observed a decrease in biomass accumulation, as indicated by a 13% reduction in final dry weight only for the treatment involving one day of high DLI followed by one day of low DLI, compared to our control. We discovered that plants can tolerate multiple days of low DLI following a day with high DLI, in contrast to the optimal values reported in the literature. This finding can lead to reduced energy consumption for supplemental lighting and consequent operational cost savings.
Collapse
Affiliation(s)
| | | | - Rhuanito Soranz Ferrarezi
- Department of Horticulture, University of Georgia, 1111 Miller Plant
Sciences, Athens, GA, United States
| |
Collapse
|
2
|
Dai M, Tan X, Ye Z, Ren J, Chen X, Kong D. Optimal Light Intensity for Lettuce Growth, Quality, and Photosynthesis in Plant Factories. PLANTS (BASEL, SWITZERLAND) 2024; 13:2616. [PMID: 39339590 PMCID: PMC11434889 DOI: 10.3390/plants13182616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024]
Abstract
In agriculture, one of the most crucial elements for sustained plant production is light. Artificial lighting can meet the specific light requirements of various plants. However, it is a challenge to find optimal lighting schemes that can facilitate a balance of plant growth and nutritional qualities. In this study, we experimented with the light intensity required for plant growth and nutrient elements. We designed three light intensity treatments, 180 μmol m-2 s-1 (L1), 210 μmol m-2 s-1 (L2), and 240 μmol m-2 s-1 (L3), to investigate the effect of light intensity on lettuce growth and quality. It can be clearly seen from the radar charts that L2 significantly affected the plant height, fresh weight, dry weight, and leaf area. L3 mainly affected the canopy diameter and root shoot ratio. The effect of L1 on lettuce phenotype was not significant compared with that of the others. The total soluble sugar, vitamin C, nitrate, and free amino acid in lettuce showed more significant increases under the L2 treatment than under the other treatments. In addition, the transpiration rate and stomatal conductance were opposite to each other. The comprehensive evaluation of the membership function value method and heatmap analysis showed that lettuce had the highest membership function value in L2 light intensity conditions, indicating that the lettuce grown under this light intensity could obtain higher yield and better quality. This study provides a new insight into finding the best environmental factors to balance plant nutrition and growth.
Collapse
Affiliation(s)
- Mengdi Dai
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianjie Ren
- Shangyu Agricultural Technology Extension Center, Shaoxing 312300, China
| | - Xuting Chen
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Wicharuck S, Khongdee N, Man A, Syahputra WNH, Yalangkan P, Chaiphak P, Chaichana C. Vertical farming for lettuce production in limited space: a case study in Northern Thailand. PeerJ 2024; 12:e17085. [PMID: 38618565 PMCID: PMC11015828 DOI: 10.7717/peerj.17085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 04/16/2024] Open
Abstract
Background Greenhouse vertical farming under natural sunlight is an alternative farming technique that grows crops in a stacking column and extends in a vertical direction. Sunlight availability is one of the crucial factors for crop development in vertical farming. Therefore, this investigation aimed to examine the effect of sunlight availability on lettuce growth and yields at different levels of vertical shelves. Methods Six shelves were constructed with three levels: upper, middle and lower levels. Lettuces (Lactuca sativa L.) as 'Baby Cos' and 'Green Oak' at 14 days after sowing were planted on the three levels. The photosynthetic photon flux density (PPFD) was recorded, and the PPFD values were then converted to the daily light integral (DLI). Plant height and canopy width were measured three times at 14, 21 and 28 days after transplanting. At maturity, fresh weight (FW) was directly monitored after harvest. Results The results showed that the highest PPFD and DLI values were found at the upper level (PPFD 697 μmol m-2 s-1 and DLI 29 mol m-2 d-1) in comparison to the middle (PPFD 391 μmol m-2 s-1 and DLI 16 mol m-2 d-1) and lower (PPFD 322 μmol m-2 s-1 and DLI 13 mol m-2 d-1) levels. The lowest plant height and canopy width values were observed on the upper levels for both lettuce varieties during the three measurement dates. The middle ('Baby Cos' = 123.8 g plant-1 and 'Green Oak' = 190.7 g plant-1) and lower ('Baby Cos' = 92.9 g plant-1 and 'Green Oak' = 203.7 g plant-1) levels had the higher values of FW in comparison to the upper level ('Baby Cos' = 84.5 g plant-1 and 'Green Oak' = 97.3 g plant-1). The values of light use efficiency (LUE) showed an increased trend from the upper to lower levels in both varieties, with values of 'Baby Cos' of 0.10 g mol-1 in the upper level, 0.28 g mol-1 in the middle level and 0.26 g mol-1 in the lower level and 'Green Oak' of 0.12 g mol-1 in the upper level, 0.44 g mol-1 in the middle level and 0.57 g mol-1 in the lower level. The findings of the study indicated the viability of utilizing vertical shelves for lettuce production.
Collapse
Affiliation(s)
- Suwimon Wicharuck
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Energy Technology for Environment Research Center, Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapon Khongdee
- Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Ar Man
- Graduate Master’s Degree Program in Energy Engineering, Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Wahyu Nurkholis Hadi Syahputra
- Agricultural Engineering Program, Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Parichat Yalangkan
- Energy Technology for Environment Research Center, Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Prapaporn Chaiphak
- Energy Technology for Environment Research Center, Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchawan Chaichana
- Energy Technology for Environment Research Center, Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Gholizadeh F, Darkó É, Benczúr K, Hamow K, Dernovics M, Nagy K, Janda T, Rady M, Gohari G, Pál M, Le V, Szalai G. Growth light substantially affects both primary and secondary metabolic processes in Catharanthus roseus plants. PHOTOSYNTHETICA 2023; 61:451-460. [PMID: 39649484 PMCID: PMC11586840 DOI: 10.32615/ps.2023.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 12/10/2024]
Abstract
Common periwinkle (Catharanthus roseus L.) is an important medicinal plant used by the pharmaceutical industry. The present work aimed to determine the effect of low light intensity on the primary and secondary metabolic processes, using various photosynthesis and targeted and untargeted analytical techniques. Growth light had only limited effects on the photosynthetic electron transport processes, although membrane stability seemed slightly higher in plants growing under higher light conditions. The reduced growth light caused a reduction in certain primary metabolites, including amino acids and sugars, and it also reduced the contents of most of the phenolic compounds investigated in the present experiments. Interestingly, the differences in the growth light caused a much less pronounced difference in the alkaloid contents than that found in the flavonoid contents. However, besides the growth light, genotypic differences, most evident in flower colour, also affected some metabolic processes, including primary and secondary processes.
Collapse
Affiliation(s)
- F. Gholizadeh
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - É. Darkó
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - K. Benczúr
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - K.Á. Hamow
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - M. Dernovics
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - K. Nagy
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - T. Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - M.R. Rady
- Department of Plant Biotechnology, National Research Centre, 33 El Behouth St. (former El-Tahrir St.), Dokki, P.O. 12622 Giza, Egypt
| | - G. Gohari
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - M. Pál
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - V.N. Le
- Center for Research and Technology Transfer (CRETECH), Vietnam Academy of Sciences and Technology (VAST), 10072 Hanoi, Vietnam
| | - G. Szalai
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| |
Collapse
|
5
|
Sawatdee S, Jarunglumlert T, Pavasant P, Sakihama Y, Flood AE, Prommuak C. Effect of mixed light emitting diode spectrum on antioxidants content and antioxidant activity of red lettuce grown in a closed soilless system. BMC PLANT BIOLOGY 2023; 23:351. [PMID: 37415111 PMCID: PMC10324264 DOI: 10.1186/s12870-023-04364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Light spectra have been demonstrated to result in different levels of comfort or stress, which affect plant growth and the availability of health-promoting compounds in ways that sometimes contradict one another. To determine the optimal light conditions, it is necessary to weigh the vegetable's mass against the amount of nutrients it contains, as vegetables tend to grow poorly in environments where nutrient synthesis is optimal. This study investigates the effects of varying light conditions on the growth of red lettuce and its occurring nutrients in terms of productivities, which were determined by multiplying the total weight of the harvested vegetables by their nutrient content, particularly phenolics. Three different light-emitting diode (LED) spectral mixes, including blue, green, and red, which were all supplemented by white, denoted as BW, GW, and RW, respectively, as well as the standard white as the control, were equipped in grow tents with soilless cultivation systems for such purposes. RESULTS Results demonstrated that the biomass and fiber content did not differ substantially across treatments. This could be due to the use of a modest amount of broad-spectrum white LEDs, which could help retain the lettuce's core qualities. However, the concentrations of total phenolics and antioxidant capacity in lettuce grown with the BW treatment were the highest (1.3 and 1.4-fold higher than those obtained from the control, respectively), with chlorogenic acid accumulation (8.4 ± 1.5 mg g- 1 DW) being particularly notable. Meanwhile, the study observed a high glutathione reductase (GR) activity in the plant achieved from the RW treatment, which in this study was deemed the poorest treatment in terms of phenolics accumulation. CONCLUSION In this study, the BW treatment provided the most efficient mixed light spectrum to stimulate phenolics productivity in red lettuce without a significant detrimental effect on other key properties.
Collapse
Affiliation(s)
- Sopanat Sawatdee
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong, 21210, Thailand
| | - Teeraya Jarunglumlert
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok (Rayong Campus), Ban Khai, Rayong, 21180, Thailand
| | | | - Yasuko Sakihama
- Graduate School/Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Adrian E Flood
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong, 21210, Thailand.
| | - Chattip Prommuak
- Energy Research Institute, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
D’Orso F, Hill L, Appelhagen I, Lawrenson T, Possenti M, Li J, Harwood W, Morelli G, Martin C. Exploring the metabolic and physiological roles of HQT in S. lycopersicum by gene editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1124959. [PMID: 37063176 PMCID: PMC10102458 DOI: 10.3389/fpls.2023.1124959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The most abundant phenolic compound in Solanaceous plants is chlorogenic acid (CGA), which possesses protective properties such as antimicrobial and antioxidant activities. These properties are particularly relevant when plants are under adverse conditions, such as pathogen attack, excess light, or extreme temperatures that cause oxidative stress. Additionally, CGA has been shown to absorb UV-B light. In tomato and potato, CGA is mainly produced through the HQT pathway mediated by the enzyme hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase. However, the absence of natural or induced mutants of this gene has made it unclear whether other pathways contribute to CGA production and accumulation. To address this question, we used CRISPR technology to generate multiple knock-out mutant lines in the tomato HQT gene. The resulting slhqt plants did not accumulate CGA or other caffeoylquinic acids (CQAs) in various parts of the plant, indicating that CQA biosynthesis depends almost entirely on the HQT pathway in tomato and, likely, other Solanaceous crops. We also found that the lack of CGA in slhqt plants led to higher levels of hydroxycinnamoyl-glucose and flavonoids compared to wild-type plants. Gene expression analysis revealed that this metabolic reorganization was partly due to flux redirection, but also involved modulation of important transcription factor genes that regulate secondary metabolism and sense environmental conditions. Finally, we investigated the physiological role of CGA in tomato and found that it accumulates in the upper epidermis where it acts as a protector against UV-B irradiation.
Collapse
Affiliation(s)
- Fabio D’Orso
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Rome, Italy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Ingo Appelhagen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Tom Lawrenson
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Marco Possenti
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Rome, Italy
| | - Jie Li
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Giorgio Morelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Rome, Italy
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
7
|
Kumar A, Singh N, Kaur A, Joshi R. Sneak-peek into the chlorophyll content, antioxidant activity, targeted and non-targeted UHPLC-QTOF LC/MS metabolomic fingerprints of pulse microgreens grown under different photoperiod regimes. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Luca SV, Zengin G, Sinan KI, Skalicka-Woźniak K, Trifan A. Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors. Antioxidants (Basel) 2023; 12:antiox12010210. [PMID: 36671072 PMCID: PMC9855019 DOI: 10.3390/antiox12010210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
There is currently no use for the vast quantities of post-distillation by-products, such as spent plant materials and residual waters, produced by the essential oil (EO) industry of aromatic herbs. In this study, the EOs of three Lamiaceae species (thyme, oregano, and basil) and their total, spent, and residual water extracts were phytochemically characterized and biologically assessed. The collected information was put through a series of analyses, including principal component analysis, heatmap analysis, and Pearson correlation analysis. Concerning the EOs, 58 volatile compounds were present in thyme (e.g., p-cymene, thymol), 44 compounds in oregano (e.g., thymol, carvacrol), and 67 compounds in basil (e.g., eucalyptol, linalool, estragole, (E)-methyl cinnamate). The LC-HRMS/MS analysis of the total, spent, and residual water extracts showed the presence of 31 compounds in thyme (e.g., quercetin-O-hexoside, pebrellin, eriodictyol), 31 compounds in oregano (e.g., rosmarinic acid, apigenin, kaempferol, salvianolic acids I, B, and E), and 25 compounds in basil (e.g., fertaric acid, cichoric acid, caftaric acid, salvianolic acid A). The EOs of the three Lamiaceae species showed the highest metal-reducing properties (up to 1792.32 mg TE/g in the CUPRAC assay), whereas the spent extracts of oregano and basil displayed very high radical-scavenging properties (up to 266.59 mg TE/g in DPPH assay). All extracts exhibited anti-acetylcholinesterase (up to 3.29 mg GALAE/g), anti-tyrosinase (up to 70.00 mg KAE/g), anti-amylase (up to 0.66 mmol ACAE/g), and anti-glucosidase (up to 1.22 mmol ACAE/g) effects. Thus, the present research demonstrated that both the raw extracts (EOs and total extracts) and the post-distillation by-products (spent material and residual water extracts) are rich in bioactive metabolites with antioxidant and enzyme inhibitory properties.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Correspondence: (S.V.L.); (G.Z.)
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
- Correspondence: (S.V.L.); (G.Z.)
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | | | - Adriana Trifan
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
9
|
Jo NY, Lee J, Byeon JE, Park HJ, Ryoo JW, Hwang SG. Elevated CO 2 concentration induces changes in plant growth, transcriptome, and antioxidant activity in fennel ( Foeniculum vulgare Mill.). FRONTIERS IN PLANT SCIENCE 2022; 13:1067713. [PMID: 36570891 PMCID: PMC9780672 DOI: 10.3389/fpls.2022.1067713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Fennel (Foeniculum vulgare Mill.) is widely used to produce natural bio-materials. Elevated CO2 (eCO2) concentrations in the atmosphere improve the net photosynthesis of plants. METHODS The aim of the present study was to investigate distinct changes in fennel growth characteristics and phytonutrient contents under different CO2 concentrations. The effects of 400 and 800 ppm concentrations on plant growth and antioxidant activity were observed under hydroponics. RESULTS AND DISCUSSION Plant growth was improved by eCO2 concentrations. We also observed diverse changes in nutrient solution (pH, electrical conductivity, and dissolved oxygen) and environmental factors (temperature and humidity) in greenhouse under light or dark conditions. Electrical conductivity increased under dark and eCO2 conditions, whereas the pH decreased. Additionally, we performed transcriptome analysis and identified CO2-responsive differentially expressed genes. In the 800 ppm group, genes involved in photosynthesis and Karrikin response were upregulated whereas those involved in syncytium formation were downregulated. Four upregulated differentially expressed genes involved in flavonoid biosynthesis and total flavonoid content were relatively increased under the 800 ppm CO2 condition. In contrast, antioxidant activity, including total phenolic content, scavenging activity, ferric ion reducing antioxidant power, and reducing power were decreased in fennel under relatively high eCO2 concentrations. Moreover, different light intensities of 12 or 24 lx did not affect the growth and antioxidant activity of fennel, suggesting eCO2 has a stronger effect on plant improvement than light intensity. The results of the present study enhance our understanding of the positive effects of CO2 on the growth and antioxidant activity of fennel.
Collapse
Affiliation(s)
- Na-Yeon Jo
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| | - Junkyung Lee
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| | - Ji-Eun Byeon
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| | - Hong-Jin Park
- Department of computer and Engineering, Sangji University, Wonju-si, South Korea
| | - Jong-Won Ryoo
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| | - Sun-Goo Hwang
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| |
Collapse
|
10
|
Cammarisano L, Graefe J, Körner O. Using leaf spectroscopy and pigment estimation to monitor indoor grown lettuce dynamic response to spectral light intensity. FRONTIERS IN PLANT SCIENCE 2022; 13:1044976. [PMID: 36479514 PMCID: PMC9720111 DOI: 10.3389/fpls.2022.1044976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Rising urban food demand is being addressed by plant factories, which aim at producing quality food in closed environment with optimised use of resources. The efficiency of these new plant production systems could be further increased by automated control of plant health and nutritious composition during cultivation, allowing for increased produce value and closer match between plant needs and treatment application with potential energy savings. We hypothesise that certain leaf pigments, including chlorophylls, carotenoids and anthocyanins, which are responsive to light, may be good indicator of plant performance and related healthy compounds composition and, that the combination of leaf spectroscopy and mathematical modelling will allow monitoring of plant cultivation through noninvasive estimation of leaf pigments. Plants of two lettuce cultivars (a green- and a red-leaf) were cultivated in hydroponic conditions for 18 days under white light spectrum in climate controlled growth chamber. After that period, plant responses to white light spectrum ('W') with differing blue wavelengths ('B', 420 - 450 nm) percentage (15% 'B15', and 40% 'B40') were investigated for a 14 days period. The two light spectral treatments were applied at photon flux densities (PFDs) of 160 and 240 µmol m-2 s-1, resulting in a total of four light treatments (160WB15, 160WB40, 240WB15, 240WB40). Chlorophyll a fluorescence measurements and assessment of foliar pigments, through destructive (in vitro) and non-destructive (in vivo) spectrophotometry, were performed at 1, 7 and 14 days after treatment initiation. Increase in measured and estimated pigments in response to WB40 and decrease in chlorophyll:carotenoid ratio in response to higher PFD were found in both cultivars. Cultivar specific behavior in terms of specific pigment content stimulation in response to time was observed. Content ranges of modelled and measured pigments were comparable, though the correlation between both needs to be improved. In conclusion, leaf pigment estimation may represent a potential noninvasive and real-time technique to monitor, and control, plant growth and nutritious quality in controlled environment agriculture.
Collapse
Affiliation(s)
- Laura Cammarisano
- Next-Generation Horticultural Systems, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | | | | |
Collapse
|
11
|
Lanoue J, St. Louis S, Little C, Hao X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. FRONTIERS IN PLANT SCIENCE 2022; 13:983222. [PMID: 36247650 PMCID: PMC9564221 DOI: 10.3389/fpls.2022.983222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Microgreens represent a fast growing segment of the edible greens industry. They are prized for their colour, texture, and flavour. Compared to their mature counterparts, microgreens have much higher antioxidant and nutrient content categorizing them as a functional food. However, current production practices in plant factories with artificial light are energy intensive. Specifically, the lack of sunlight within the indoor structure means all of the light must be provided via energy consuming light fixtures, which is energy intensive and costly. Plant growth is usually increased with the total amount of light provided to the plants - daily light integral (DLI). Long photoperiods of low intensity lighting (greater than 18h) providing the desired/target DLI can reduce the capital costs for light fixtures and electricity costs. This is achieved by moving the electricity use from peak daytime hours (high price) to off-peak hours (low price) during the night in regions with time-based pricing scheme and lowering the electricity use for air conditioning, if plant growth is not compromised. However, lighting with photoperiods longer than tolerance thresholds (species/cultivar specific) usually leads to plant stress/damage. Therefore, we investigated the effects of continuous 24h white light (CL) at two DLIs (~14 and 21 mol m-2 d-1) on plant growth, yield, and antioxidant content on 4 types of microgreens - amaranth, collard greens, green basil, and purple basil to see if it compromises microgreen production. It was found that amaranth and green basil had larger fresh biomass when grown under CL compared to 16h when the DLIs were the same. In addition, purple basil had higher biomass at higher DLI, but was unaffected by photoperiods. Plants grown under the CL treatments had higher energy-use-efficiencies for lighting (10-42%) than plants grown under the 16h photoperiods at the same DLI. Notably, the electricity cost per unit of fresh biomass ($ g-1) was reduced (8-38%) in all microgreens studied when plants were grown under CL lighting at the same DLIs. Amaranth and collard greens also had higher antioxidant content. Taken together, growing microgreens under CL can reduce electricity costs and increase yield while maintaining or improving nutritional content.
Collapse
Affiliation(s)
| | | | | | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|