1
|
Aghamirzaei H, Mumivand H, Nia AE, Raji MR, Maroyi A, Maggi F. Effects of Micronutrients on the Growth and Phytochemical Composition of Basil ( Ocimum basilicum L.) in the Field and Greenhouse (Hydroponics and Soil Culture). PLANTS (BASEL, SWITZERLAND) 2024; 13:2498. [PMID: 39273982 PMCID: PMC11397607 DOI: 10.3390/plants13172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
The current research was conducted to compare the growth, yield, and phytochemical composition of basil (Ocimum basilicum) in the open field and the soil and hydroponic cultivation in a greenhouse. Furthermore, the effect of foliar spraying of micronutrients on this crop was also evaluated. In each of the cultivation systems, foliar spraying of one micronutrient, either iron sulfate (Fe), zinc sulfate (Zn), copper sulfate (Cu), manganese sulfate (Mn), or boric acid (B), at a concentration of 0.1% was applied in a randomized complete block design. Plants grown in the hydroponic system had higher yield and biomass. The concentration of the elements K, Ca, Mg, N, P, Mn, Fe, B, and Zn in the leaves of hydroponic plants was higher. Contrarily, plants cultivated in the field showed higher stem dry weight, essential oil content, phenolic and flavonoid content, and antioxidant activity. The level of methyl chavicol was higher in the hydroponic culture, but the level of 1,8-cineole was much lower in this cropping system. Foliar spraying of Cu, Mn, Zn, Fe, or B significantly increased leaf dry weight and anthocyanin content. In field conditions, the highest levels of phenolics, flavonoids, and antioxidant capacity were observed with Zn or Mn application. In the hydroponic system, foliar spraying of Zn or B led to the highest antioxidant capacity, and total phenolic and flavonoid contents. Overall, the basil plants cultivated in the field showed higher bioactive ingredients. However, the essential oil of plants cultivated in the hydroponic system had a higher economic value due to its higher percentage of methyl chavicol.
Collapse
Affiliation(s)
- Hamid Aghamirzaei
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Hasan Mumivand
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Abdollah Ehtesham Nia
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Mohamad Reza Raji
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice 5700, South Africa
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
2
|
Baek HI, Ha KC, Park YK, Kim TY, Park SJ. Efficacy and Safety of Panax ginseng Sprout Extract in Subjective Memory Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:1952. [PMID: 38931306 PMCID: PMC11206504 DOI: 10.3390/nu16121952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Sprout ginseng extract (ThinkGIN™) manufactured through a smart farm system has been shown to improve memory in preclinical studies. This study conducted a 12-week randomized, double-blind, placebo-controlled clinical trial to evaluate the efficacy and safety of ThinkGIN™ for improving memory in subjective memory impairment (SMI). Subjects aged 55 to 75 years with SMI participated in this study. A total of 80 subjects who met the inclusion/exclusion criteria were assigned to the ThinkGIN™ group (n = 40, 450 mg ThinkGIN™/day) or a placebo group (n = 40). Efficacy and safety evaluations were conducted before intervention and at 12 weeks after intervention. As a result of 12 weeks of ThinkGIN™ intake, significant differences in SVLT, RCFT, MoCA-K, PSQI-K, and AChE were observed between the two groups. Safety evaluation (AEs, laboratory tests, vital signs, and electrocardiogram) revealed that ThinkGIN™ was safe with no clinically significant changes. Therefore, ThinkGIN™ has the potential to be used as a functional food to improve memory.
Collapse
Affiliation(s)
- Hyang-Im Baek
- Department of Food Science & Nutrition, Woosuk University, Wanju 55338, Republic of Korea;
- Healthcare Claims & Management Inc., Jeonju 54858, Republic of Korea; (K.-C.H.); (Y.-K.P.)
| | - Ki-Chan Ha
- Healthcare Claims & Management Inc., Jeonju 54858, Republic of Korea; (K.-C.H.); (Y.-K.P.)
| | - Yu-Kyung Park
- Healthcare Claims & Management Inc., Jeonju 54858, Republic of Korea; (K.-C.H.); (Y.-K.P.)
| | | | - Soo-Jung Park
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Woosuk University, Jeonju 55338, Republic of Korea
| |
Collapse
|
3
|
Park KW, Kim JH, Jeong BG, Park JK, Jang HY, Oh YS, Kang KY. Increased Accumulation of Ginsenosides in Panax ginseng Sprouts Cultivated with Kelp Fermentates. PLANTS (BASEL, SWITZERLAND) 2024; 13:463. [PMID: 38337995 PMCID: PMC10856821 DOI: 10.3390/plants13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Currently, new agri-tech has been developed and adapted for the cultivation of crops using smart farming technologies, e.g., plant factories and hydroponics. Kelp (Laminaria japonica), which has a high industrial value, was considered as an alternative to chemicals for its eco-friendly and sustainably wide use in crop cultivation. In this study, a fermented kelp (FK) was developed for use in hydroponics. The FK contained various free and protein-bound amino acid compositions produced by fermenting the kelp with Saccharomyces cerevisiae. Supplementing FK as an aeroponic medium when cultivating ginseng sprouts (GSs) elevated the total phenolic and flavonoid contents. Additionally, seven ginsenosides (Rg1, Re, Rb1, Rc, Rg2, Rb2, and Rd) in GSs cultivated with FK in a smart-farm system were identified and quantified by a high-performance liquid chromatography-evaporative light scattering detector/mass spectrometry analysis. Administering FK significantly increased the ginsenosides in the GSs compared to the control group, which was cultivated with tap water. These results indicate the FK administration contributed to the increased accumulation of ginsenosides in the GSs. Overall, this study suggests that FK, which contains abundant nutrients for plant growth, can be used as a novel nutrient solution to enhance the ginsenoside content in GSs during hydroponic cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kyung-Yun Kang
- R&D Team, Suncheon Research Center for Bio Health Care, Suncheon-si 57962, Republic of Korea; (K.-W.P.); (J.-H.K.); (B.-G.J.); (J.-K.P.); (H.-Y.J.); (Y.-S.O.)
| |
Collapse
|
4
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
5
|
Kim TH, Baek S, Kwon KH, Oh SE. Hierarchical Machine Learning-Based Growth Prediction Model of Panax ginseng Sprouts in a Hydroponic Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:3867. [PMID: 38005764 PMCID: PMC10675594 DOI: 10.3390/plants12223867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Due to an increase in interest towards functional and health-related foods, Panax ginseng sprout has been in the spotlight since it contains a significant amount of saponins which have anti-cancer, -stress, and -diabetic effects. To increase the amount of production as well as decrease the cultivation period, sprouted ginseng is being studied to ascertain its optimal cultivation environment in hydroponics. Although there are studies on functional components, there is a lack of research on early disease prediction along with productivity improvement. In this study, the ginseng sprouts were cultivated in four different hydroponic conditions: control treatment, hydrogen-mineral treatment, Bioblock treatment, and highly concentrated nitrogen treatment. Physical properties were measured, and environmental data were acquired using sensors. Using three algorithms (artificial neural networks, support vector machines, random forest) for germination and rottenness classification, and leaf number and length of stem prediction models, we propose a hierarchical machine learning model that predicts the growth outcome of ginseng sprouts after a week. Based on the results, a regression model predicts the number of leaves and stem length during the growth process. The results of the classifier models showed an F1-score of germination classification of about 99% every week. The rottenness classification model showed an increase from an average of 83.5% to 98.9%. Predicted leaf numbers for week 1 showed an average nRMSE value of 0.27, which decreased by about 33% by week 3. The results for predicting stem length showed a higher performance compared to the regression model for predicting leaf number. These results showed that the proposed hierarchical machine learning algorithm can predict germination and rottenness in ginseng sprout using physical properties.
Collapse
Affiliation(s)
- Tae Hyong Kim
- Digital Factory Project Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (T.H.K.); (S.B.); (K.H.K.)
| | - Seunghoon Baek
- Digital Factory Project Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (T.H.K.); (S.B.); (K.H.K.)
| | - Ki Hyun Kwon
- Digital Factory Project Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (T.H.K.); (S.B.); (K.H.K.)
| | - Seung Eel Oh
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| |
Collapse
|
6
|
Song J, Yang J, Jeong BR. Difference between Day and Night Temperature (DIF) and Light Intensity Affect Growth and Photosynthetic Characteristics of Panax ginseng Meyer Sprouts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2820. [PMID: 37570974 PMCID: PMC10420926 DOI: 10.3390/plants12152820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Panax ginseng sprouts (PGS) have the advantage of requiring short-term cultivation while maintaining higher ginsenoside contents than traditional ginseng seedlings. It is feasible to improve their yield capacity by manipulating physical factors such as temperature and light. This study therefore investigated the effects of the DIF (difference between day and night temperature) and LI (light intensity) on the growth and photosynthetic characteristics of PGS. To this end, four DIF treatments (18/22 °C, 20/20 °C, 22/22 °C, 22/18 °C), corresponding to two LI regimes (20 PPFD, 200 PPFD), were applied on one-year-old ginseng rootlets in closed-type plant production systems (CPPSs). The PGS had distinctly different responses to the eight treatments. In particular, we found that negative DIF considerably hampered the growth and development of roots, shoots, leaves, and photosynthesis, regardless of the LI considered. The PGS treated with 20/20 °C combined with 20 PPFD displayed the best root growth, shoot development, leaf area, as well as optimal photosynthetic ability. On the other hand, we further showed that the root growth rate was positively correlated with the stem diameter, leaf traits, and photosynthetic ability, whereas it was negatively correlated with the petiole length, stem length, and shoot length. Collectively, 20/20 °C combined with 20 PPFD was the optimal condition in the current study, and may be regarded as a successful strategy for large-scale productions of PGS.
Collapse
Affiliation(s)
- Jinnan Song
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang 262700, China; (J.S.); (J.Y.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jingli Yang
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang 262700, China; (J.S.); (J.Y.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|