1
|
Górecka M, Koszelnik-Leszek A, Rusaczonek A, Marek N, Matz O, Muszyńska E. In Vitro Propagation of Alyssum Species with Different Metal Accumulation Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:3122. [PMID: 39599331 PMCID: PMC11597741 DOI: 10.3390/plants13223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
The Alyssum genus, with its many metal-adapted species, is a good candidate for research on phytoremediation and metal tolerance mechanisms. These goals can be supported by elaborating on an in vitro multiplication protocol. Our study aimed to determine the aseptic conditions for the growth and effective propagation of Alyssum murale, A. alyssoides, and A. montanum, each exhibiting different adaptation strategies to nickel ions. Firstly, hydrogen peroxide (H2O2) or sodium nitroprusside (SNP) were investigated in the biological Lepidium test to find their optimal concentrations that could improve the germination attributes of tested Alyssum species. The concentration of 0.5 mM H2O2 or SNP was selected for research on Alyssum seeds, which were the initial material to start in vitro cultivation. Regardless of the species, H2O2 harmed germination percentage; however, its application accelerated radicle emergence, especially in metal-sensitive genotypes, while in both metal-tolerant ones, the germination time of H2O2-treated seeds was similar to that of treated with SNP. These findings provide a novel insight into the effect of H2O2 or SNP on seeds, contributing to a better understanding of their role in the germination of different genotypes. Among tested media compositions, the synchronous plant regeneration of all species was achieved on MS medium supplemented with 0.5 mg/L 2iP and 0.1 mg/L IAA, making an essential advancement in the in vitro protocols for metallophytes.
Collapse
Affiliation(s)
- Mirosława Górecka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland; (M.G.); (A.R.)
| | - Anna Koszelnik-Leszek
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland; (M.G.); (A.R.)
| | - Natalia Marek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland; (M.G.); (A.R.)
| | - Oliwia Matz
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland; (M.G.); (A.R.)
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland; (M.G.); (A.R.)
| |
Collapse
|
2
|
Ievinsh G. Water Content of Plant Tissues: So Simple That Almost Forgotten? PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061238. [PMID: 36986926 PMCID: PMC10058729 DOI: 10.3390/plants12061238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/12/2023]
Abstract
The aim of the present review was to reconsider basic information about various functional aspects related to plant water content and provide evidence that the usefulness of measuring absolute water content in plant sciences is undervalued. First, general questions about water status in plants as well as methods for determining water content and their associated problems were discussed. After a brief overview of the structural organization of water in plant tissues, attention was paid to the water content of different parts of plants. Looking at the influence of environmental factors on plant water status, the differences caused by air humidity, mineral supply, biotic effects, salinity, and specific life forms (clonal and succulent plants) were analyzed. Finally, it was concluded that the expression of absolute water content on a dry biomass basis makes easily noticeable functional sense, but the physiological meaning and ecological significance of the drastic differences in plant water content need to be further elucidated.
Collapse
Affiliation(s)
- Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
3
|
Ievinsh G, Landorfa-Svalbe Z, Andersone-Ozola U, Karlsons A, Osvalde A. Salinity and Heavy Metal Tolerance, and Phytoextraction Potential of Ranunculus sceleratus Plants from a Sandy Coastal Beach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121959. [PMID: 36556324 PMCID: PMC9782882 DOI: 10.3390/life12121959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to evaluate tolerance to salinity and different heavy metals as well as the phytoextraction potential of Ranunculus sceleratus plants from a brackish coastal sandy beach habitat. Four separate experiments were performed with R. sceleratus plants in controlled conditions: (1) the effect of NaCl gradient on growth and ion accumulation, (2) the effect of different Na+ and K+ salts on growth and ion accumulation, (3) heavy metal tolerance and metal accumulation potential, (4) the effect of different forms of Pb salts (nitrate and acetate) on plant growth and Pb accumulation. A negative effect of NaCl on plant biomass was evident at 0.5 g L-1 Na+ and growth was inhibited by 44% at 10 g L-1 Na+, and this was associated with changes in biomass allocation. The maximum Na+ accumulation (90.8 g kg-1) was found in the stems of plants treated with 10 g kg-1 Na+. The type of anion determined the salinity tolerance of R. sceleratus plants, as Na+ and K+ salts with an identical anion component had a comparable effect on plant growth: nitrates strongly stimulated plant growth, and chloride treatment resulted in slight but significant growth reduction, but plants treated with nitrites and carbonates died within 4 and 5 weeks after the full treatment, respectively. The shoot growth of R. sceleratus plants was relatively insensitive to treatment with Mn, Cd and Zn in the form of sulphate salts, but Pb nitrate increased it. Hyperaccumulation threshold concentration values in the leaves of R. sceleratus were reached for Cd, Pb and Zn. R. sceleratus can be characterized as a shoot accumulator of heavy metals and a hyperaccumulator of Na+. A relatively short life cycle together with a high biomass accumulation rate makes R. sceleratus useful for dynamic constructed wetland systems aiming for the purification of concentrated wastewaters.
Collapse
Affiliation(s)
- Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
- Correspondence:
| | - Zaiga Landorfa-Svalbe
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Andis Karlsons
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| | - Anita Osvalde
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| |
Collapse
|
4
|
Purmale L, Jēkabsone A, Andersone-Ozola U, Ievinsh G. Salinity Tolerance, Ion Accumulation Potential and Osmotic Adjustment In Vitro and In Planta of Different Armeria maritima Accessions from a Dry Coastal Meadow. PLANTS (BASEL, SWITZERLAND) 2022; 11:2570. [PMID: 36235436 PMCID: PMC9571588 DOI: 10.3390/plants11192570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to compare tolerance to salinity and ion accumulation potential of Armeria maritima subsp. elongata. Three accessions (AM1 and AM2, both from Latvia, and AM3 from Sweden) from relatively dry sandy soil habitats in the Baltic Sea region were selected and compared using both in vitro cultivated shoot explants and long-term soil-cultivated plants at flowering stage. Growth of root non-forming explants treated with increasing concentrations of NaCl was significantly inhibited starting from 110 mmol L-1, and the rate of shoot formation was even more sensitive. Significant differences in morphology and responses to salinity were found between different accessions. For soil-grown plants, biomass accumulation in above-ground parts was relatively little affected by salinity in AM1 and AM2 in comparison to that in AM3. Differences in ion accumulation were evident between the accessions as well as in respect to cultivation system used. Maximum accumulation capacity for Na+ was up to 2.5 mol kg-1 both in shoot explant tissues and in old leaves of soil-grown plants treated with NaCl, but that for K+ reached 4.0 mol kg-1 in old leaves of soil-grown plants treated with KCl. Non-ionic component of osmotic value was relatively high in old leaves and significantly increased under NaCl treatment, especially for AM2 and AM3 plants at moderate salinity, but in AM1 only at high salinity. In contrast, it significantly decreased in old leaves of AM2 plants treated with increasing concentration of KCl. It can be concluded that a wide salinity tolerance exists within A. maritima accessions from dry sandy soil habitats, associated with the ability to accumulate surplus ions both in salt glands and old leaves.
Collapse
Affiliation(s)
- Līva Purmale
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|