1
|
Miyaki M, Komiya Y, Sumiya I, Yamaguchi R, Kuno M, Kojima C, Makino R, Suzuki T, Suzuki Y, Yokoyama I, Arihara K. Effects of Maillard Reaction Products on Skeletal Muscle Cells: An In Vitro Study Using C2C12 Myotubes. Metabolites 2025; 15:316. [PMID: 40422892 DOI: 10.3390/metabo15050316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Maillard reaction products (MRPs) are known for their antioxidant properties; however, their effects on muscle cells remain unclear. This study aims to elucidate the effects of MRPs on muscle hypertrophy and atrophy in C2C12 myotubes. Methods: MRPs were prepared by heating L-lysine and D-glucose, and their antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Subsequently, mouse C2C12 myoblasts were cultured with MRPs until myotubes formed, and their diameters were measured to assess hypertrophic and atrophic changes. Akt phosphorylation was evaluated by Western blotting, and gene expression levels were analyzed via quantitative PCR. Results: The prepared MRPs exhibited high antioxidant activity in the DPPH radical scavenging assay. MRP treatment significantly increased the average myotube diameter by approximately 40% and enlarged the largest myotube diameter by up to 80%, potentially mediated by enhanced Akt phosphorylation. Under dexamethasone-induced atrophy, MRPs modestly attenuated the reduction in myotube diameter by approximately 20%, although the effect was not statistically significant, and did not significantly alter the fusion index either. Quantitative PCR analysis revealed that MRP treatment significantly reduced the mRNA expression of Nfe2l2, a key regulator of antioxidant response, whereas it had no notable effects on the expression of genes related to myoblast proliferation (Myod1), differentiation (Myog), hypertrophy (Igf1), atrophy (Foxo1 and Trim63), and oxidative stress (Cat, Gclc, and Nqo1). Conclusions: Our findings suggested that MRPs possess antioxidant activity and promote myotube hypertrophy via Akt signaling. This study highlighted the potential of MRPs as functional ingredients for promoting muscle health, though further in vivo studies are required to validate their physiological relevance.
Collapse
Affiliation(s)
- Marina Miyaki
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Yusuke Komiya
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Itsuki Sumiya
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Rina Yamaguchi
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Moeka Kuno
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Chika Kojima
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Ryosuke Makino
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihiro Suzuki
- Laboratory of Animal Health Science, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Issei Yokoyama
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Keizo Arihara
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| |
Collapse
|
2
|
Suzuki S, Otsuka A, Kurata E, Mio K, Inaba T, Yoshida K, Kinoshita S, Hamaguchi T, Sangsoo E, Abo M. Sex-Specific Effects of Cumin Supplementation on Body Composition, Lipid Levels, and Glycemic Profiles: A Pilot Study. Cureus 2025; 17:e82774. [PMID: 40416236 PMCID: PMC12098769 DOI: 10.7759/cureus.82774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
OBJECTIVES Cumin (Cuminum cyminum L.) is a medicinal plant in the Apiaceae family that is considered promising for treating lifestyle-related diseases such as obesity, diabetes, and dyslipidemia. However, sex differences in the effects of cumin have not been well studied. This study aims to clarify the effects of cumin on body composition and lipid and glucose profiles and examine the differences in these effects between men and women. DESIGN AND METHODS We conducted a before-and-after trial with 29 healthy adults aged 22-74 at a single facility. After a two-month pre-intervention period, participants consumed 2 g of cumin powder daily for two months. We measured body composition using bioelectrical impedance analysis. Additionally, we assessed blood biomarkers, including lipid and blood glucose profiles, at baseline and both before and after the intervention period. We analyzed the data using Student's t-tests and Wilcoxon rank-sum tests. RESULTS In women, cumin intake significantly reduced the extracellular-to-total body water ratio and increased phase angle, suggesting improved muscle quality. Low-density lipoprotein cholesterol (LDL-C) decreased significantly in both sexes, while high-density lipoprotein cholesterol (HDL-C) decreased in men only. There were no significant changes in glucose profiles. CONCLUSION Cumin showed sex-specific effects on body composition and lipid profiles. Muscle quality improved in women only following cumin consumption, and while its effects on LDL-C were similar in both sexes, its effects on HDL-C were specific to men. These findings indicate that cumin's health benefits vary by sex, highlighting its potential for personalized use.
Collapse
Affiliation(s)
- Shin Suzuki
- Department of Rehabilitation Medicine, Jikei University School of Medicine, Tokyo, JPN
| | - Ayako Otsuka
- Department of Nutrition, Koyama Rehabilitation Hospital, Shizuoka, JPN
| | - Etsuko Kurata
- Department of Nutrition, Koyama Rehabilitation Hospital, Shizuoka, JPN
| | - Kimito Mio
- Department of Rehabilitation Medicine, Jikei University School of Medicine, Tokyo, JPN
| | - Tasuku Inaba
- Department of Rehabilitation Medicine, Jikei University School of Medicine, Tokyo, JPN
| | - Kentaro Yoshida
- Department of Rehabilitation Medicine, Jikei University School of Medicine, Tokyo, JPN
| | - Shoji Kinoshita
- Department of Rehabilitation Medicine, Jikei University School of Medicine, Tokyo, JPN
| | - Toyohiro Hamaguchi
- Department of Rehabilitation, Graduate School of Health Sciences, Saitama Prefectural University, Saitama, JPN
| | - Eun Sangsoo
- Department of Rehabilitation Medicine, Koyama Rehabilitation Hospital, Shizuoka, JPN
| | - Masahiro Abo
- Department of Rehabilitation Medicine, Jikei University School of Medicine, Tokyo, JPN
| |
Collapse
|
3
|
Koh YC, Hsu HW, Ho PY, Lin WS, Hsu KY, Majeed A, Ho CT, Pan MH. Feruloylacetone and Its Analog Demethoxyferuloylacetone Mitigate Obesity-Related Muscle Atrophy and Insulin Resistance in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1231-1243. [PMID: 39754576 PMCID: PMC11741112 DOI: 10.1021/acs.jafc.4c07798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/07/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies. This study investigates the impact of FER and DFER on obesity-related glucose intolerance and muscle atrophy. High-fat diet (HFD) feeding resulted in muscle mass reduction and increased intramuscular triglyceride accumulation, both of which were mitigated by FER and DFER supplementation. The supplements activated the PI3K/Akt/mTOR signaling pathway, enhanced muscle protein synthesis, and decreased markers of muscle protein degradation. Additionally, FER and DFER supplementation improved glucose homeostasis in HFD-fed mice. The supplements also promoted the formation of a gut microbial consortium comprising Blautia intestinalis, Dubosiella newyorkensis, Faecalicatena fissicatena, Waltera intestinalis, Clostridium viride, and Caproiciproducens galactitolivorans, which contributed to the reduction of obesity-induced chronic inflammation. These findings suggest, for the first time, that FER and DFER may prevent obesity-related complications, including muscle atrophy and insulin resistance, thereby warranting further research into their long-term efficacy and safety.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Han-Wen Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Pin-Yu Ho
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Wei-Sheng Lin
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
- Department
of Food Science, National Quemoy University, 89250 Quemoy, Taiwan
| | - Kai-Yu Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Anju Majeed
- Sami-Sabinsa
Group Limited, Bengaluru 560058, Karnataka, India
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick 08901, New Jersey, United
States
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan
| |
Collapse
|
4
|
Mastrangelo S, Romano A, Maurizi P, Rizzo D, Attinà G, Ruggiero A. Nutritional Challenges in Paediatric Oncology: Screening and Managing Malnutrition and Sarcopenia. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2024; 17:2203-2216. [DOI: 10.13005/bpj/3017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Sarcopenia and malnutrition can coexist in pediatric patients with neoplasia, worsening the patient's prognosis. The classification of primary and secondary sarcopenia may be helpful in clinical practice, as it can help with timely initiation of appropriate and tailored dietary treatments to address it. This review summarizes the current state of the art of assessing skeletal muscle function in children and adolescents with cancer and discusses the role of nutritional interventions in the management of children with cancer. It highlights the urgent need for comprehensive nutritional support and interventions to mitigate the impact of malnutritions on both treatment outcomes and patients' well-being.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- 1Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Alberto Romano
- 1Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Palma Maurizi
- 1Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Daniela Rizzo
- 2UOC Oncoematologia Pediatrica, P.O. "Vito Fazzi, Lecce, Italy
| | - Giorgio Attinà
- 1Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Antonio Ruggiero
- 1Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Jo HS, Kim MJ, Amaya-Quiroz L, Yoon H, Han BK, Hong JY, Kim YJ. Suppressive Effects of Arriheuk Wheat Sprout Extract on Muscle Atrophy in Dexamethasone-Induced C2C12 Myotubes and a Mouse Model. J Med Food 2024; 27:1201-1209. [PMID: 39388119 DOI: 10.1089/jmf.2024.k.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Skeletal muscle atrophy refers to the loss of muscle strength and mass due to decreased protein synthesis or increased protein degradation. Various conditions can cause muscle atrophy, including aging, heart disease, chronic illness, obstructive pulmonary disease, kidney failure, diabetes, AIDS, cancer, sepsis, and steroid use. Various natural materials have been studied for the prevention of muscle atrophy. In this study, we found that extracts from the sprouts of purple wheat, Arriheuk, prevented muscle atrophy in vitro and in vivo. Arriheuk wheat sprouts extract inhibited the expression of muscle protein breakdown factors, which were increased by dexamethasone, and improved muscle strength. In C2C12 myotubes, Arriheuk wheat sprout extract (ARE) protected against dexamethasone-induced muscle atrophy by potentiating Akt/mammalian target of rapamycin and AMP-activated protein kinase (AMPK)/forkhead box O3 (AMPK/Foxo3) signaling and inhibiting the expression of Atrogin-1, muscle RING-finger protein-1 (MuRF1), and Myostatin. In addition, the administration of ARE in an animal model of muscle atrophy induced by dexamethasone prevented myocardial and muscle strength loss by regulating the expression of muscle atrophy-related factors by affecting AMPK/Foxo3 signaling. Taken together, these results suggest that Arriheuk wheat sprouts extract effectively alleviates muscle atrophy by regulating the synthesis and breakdown of muscle proteins.
Collapse
Affiliation(s)
- Hyun Sun Jo
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
| | - Mi Jeong Kim
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- Institute of Natural Sciences, Korea University, Sejong 30019, Korea
| | - Laura Amaya-Quiroz
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada
| | - Hyeock Yoon
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- Department of Food Regulatory Science, Korea University, Sejong 30019, Korea
| | - Bok Kyung Han
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- Department of Food Regulatory Science, Korea University, Sejong 30019, Korea
| | - Ji Youn Hong
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- Department of Food Regulatory Science, Korea University, Sejong 30019, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
- Department of Food Regulatory Science, Korea University, Sejong 30019, Korea
| |
Collapse
|
6
|
Zhang H, Kang R, Song T, Ren F, Liu J, Wang J. Advances in relieving exercise fatigue for curcumin: Molecular targets, bioavailability, and potential mechanism. J Food Sci 2024; 89:4604-4619. [PMID: 39031649 DOI: 10.1111/1750-3841.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 07/22/2024]
Abstract
Intense and prolonged physical activity can lead to a decrease in muscle capacity, making it difficult to maintain the desired exercise intensity and resulting in exercise fatigue. The long-term effects of exercise fatigue can be very damaging to the body, so it is an urgent problem to be addressed. The intervention of foodborne active substances will be an effective measure. There is growing evidence that the molecular structure and function of curcumin have a positive effect on relieving fatigue. In this review, we summarize curcumin's molecular structure, which enables it to bind to a wealth of molecular targets, regulate signaling pathways, and thus alleviate exercise fatigue through a variety of mechanisms, including reducing oxidative stress, inhibiting inflammation, reducing metabolite accumulation, and regulating energy metabolism. The effects of curcumin on fatigue-related markers were analyzed from the perspective of animal models and human models and based on the bidirectional interaction between curcumin and intestinal microbiota: Intestinal microbiota can transform curcumin, and curcumin regulates gut microbiota through metabolic pathways, providing a new perspective for alleviating fatigue. This review contributes to a more comprehensive understanding of the possible molecular mechanisms of curcumin in anti-fatigue and provides a new possibility for the development of functional foods in the future.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Rui Kang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Tiancong Song
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Jie Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, China
| |
Collapse
|
7
|
Zhang R, Chen S, Zhao F, Wang W, Liu D, Chen L, Bai T, Wu Z, Ji L, Zhang J. Sulforaphane enhanced muscle growth by promoting lipid oxidation through modulating key signaling pathways. Biosci Rep 2024; 44:BSR20240084. [PMID: 38868980 PMCID: PMC11224001 DOI: 10.1042/bsr20240084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
Sulforaphane (SFN) has shown diverse effects on human health and diseases. SFN was administered daily to C57BL/6J mice at doses of 1 mg/kg (SFN1) and 3 mg/kg (SFN3) for 8 weeks. Both doses of SFN accelerated body weight increment. The cross-sectional area and diameter of Longissimus dorsi (LD) muscle fibers were enlarged in SFN3 group. Triglyceride (TG) and total cholesterol (TC) levels in LD muscle were decreased in SFN groups. RNA sequencing results revealed that 2455 and 2318 differentially expressed genes (DEGs) were found in SFN1 and SFN3 groups, respectively. Based on GO enrichment analysis, 754 and 911 enriched GO terms in the SFN1 and SFN3 groups, respectively. KEGG enrichment analysis shown that one KEGG pathway was enriched in the SFN1 group, while six KEGG pathways were enriched in the SFN3 group. The expressions of nine selected DEGs validated with qRT-PCR were in line with the RNA sequencing data. Furthermore, SFN treatment influenced lipid and protein metabolism related pathways including AMPK signaling, fatty acid metabolism signaling, cholesterol metabolism signalling, PPAR signaling, peroxisome signaling, TGFβ signaling, and mTOR signaling. In summary, SFN elevated muscle fibers size and reduced TG and TC content of in LD muscle by modulating protein and lipid metabolism-related signaling pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Suqin Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Feng Zhao
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lin Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhoulin Wu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
8
|
Qin H, King GJ, Borpatragohain P, Zou J. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. PLANT COMMUNICATIONS 2023:100565. [PMID: 36823985 PMCID: PMC10363516 DOI: 10.1016/j.xplc.2023.100565] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs), found mainly in species of the Brassicaceae family, are one of the most well-studied classes of secondary metabolites. Produced by the action of myrosinase on GSLs, GSL-derived hydrolysis products (GHPs) primarily defend against biotic stress in planta. They also significantly affect the quality of crop products, with a subset of GHPs contributing unique food flavors and multiple therapeutic benefits or causing disagreeable food odors and health risks. Here, we explore the potential of these bioactive functions, which could be exploited for future sustainable agriculture. We first summarize our accumulated understanding of GSL diversity and distribution across representative Brassicaceae species. We then systematically discuss and evaluate the potential of exploited and unutilized genes involved in GSL biosynthesis, transport, and hydrolysis as candidate GSL engineering targets. Benefiting from available information on GSL and GHP functions, we explore options for multifunctional Brassicaceae crop ideotypes to meet future demand for food diversification and sustainable crop production. An integrated roadmap is subsequently proposed to guide ideotype development, in which maximization of beneficial effects and minimization of detrimental effects of GHPs could be combined and associated with various end uses. Based on several use-case examples, we discuss advantages and limitations of available biotechnological approaches that may contribute to effective deployment and could provide novel insights for optimization of future GSL engineering.
Collapse
Affiliation(s)
- Han Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|