1
|
Solhaug KA, Eiterjord G, Løken MH, Gauslaa Y. Non-photochemical quenching may contribute to the dominance of the pale mat-forming lichen Cladonia stellaris over the sympatric melanic Cetraria islandica. Oecologia 2024; 204:187-198. [PMID: 38233688 PMCID: PMC10830725 DOI: 10.1007/s00442-023-05498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024]
Abstract
The mat-forming fruticose lichens Cladonia stellaris and Cetraria islandica frequently co-occur on soils in sun-exposed boreal, subarctic, and alpine ecosystems. While the dominant reindeer lichen Cladonia lacks a cortex but produces the light-reflecting pale pigment usnic acid on its surface, the common but patchier Cetraria has a firm cortex sealed by the light-absorbing pigment melanin. By measuring reflectance spectra, high-light tolerance, photosynthetic responses, and chlorophyll fluorescence in sympatric populations of these lichens differing in fungal pigments, we aimed to study how they cope with high light while hydrated. Specimens of the two species tolerated high light equally well but with different protective mechanisms. The mycobiont of the melanic species efficiently absorbed excess light, consistent with a lower need for its photobiont to protect itself by non-photochemical quenching (NPQ). By contrast, usnic acid screened light at 450-700 nm by reflectance and absorbed shorter wavelengths. The ecorticate usnic species with less efficient fungal light screening exhibited a consistently lower light compensation point and higher CO2 uptake rates than the melanic lichen. In both species, steady state NPQ rapidly increased at increasing light with no signs of light saturation. To compensate for less internal shading causing light fluctuations with a larger amplitude, the usnic lichen photobiont adjusted to changing light by faster induction and faster relaxation of NPQ rapidly transforming excess excitation energy to less damaging heat. The high and flexible NPQ tracking fluctuations in solar radiation probably contributes to the strong dominance of the usnic mat-forming Cladonia in open lichen-dominated heaths.
Collapse
Affiliation(s)
- Knut Asbjørn Solhaug
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Gaute Eiterjord
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Martine Hana Løken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Yngvar Gauslaa
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| |
Collapse
|
2
|
Daminova AG, Rassabina AE, Khabibrakhmanova VR, Beckett RP, Minibayeva FV. Topography of UV-Melanized Thalli of Lobaria pulmonaria (L.) Hoffm. PLANTS (BASEL, SWITZERLAND) 2023; 12:2627. [PMID: 37514242 PMCID: PMC10383456 DOI: 10.3390/plants12142627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Lichens are unique extremophilic organisms due to their phenomenal resistance to adverse environmental factors, including ultraviolet (UV) irradiation. Melanization plays a special role in the protection of lichens from UV-B stress. In the present study, we analyzed the binding of melanins with the components of cell walls of the mycobiont of the upper cortex in the melanized lichen thalli Lobaria pulmonaria. Using scanning electron and atomic force microscopy, the morphological and nanomechanical characteristics of the melanized layer of mycobiont cells were visualized. Melanization of lichen thalli led to the smoothing of the surface relief and thickening of mycobiont cell walls, as well as the reduction in adhesion properties of the lichen thallus. Treatment of thalli with hydrolytic enzymes, especially chitinase and lichenase, enhanced the yield of melanin from melanized thalli and promoted the release of carbohydrates, while treatment with pectinase increased the release of carbohydrates and phenols. Our results suggest that melanin can firmly bind with hyphal cell wall carbohydrates, particularly chitin and 1,4-β-glucans, strengthening the melanized upper cortex of lichen thalli, and thereby it can contribute to lichen survival under UV stress.
Collapse
Affiliation(s)
- Amina G Daminova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| | - Anna E Rassabina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| | - Venera R Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| | - Richard P Beckett
- School of Life Sciences, University of KwaZulu-Natal, PBag X01, Scottsville 3209, South Africa
| | - Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| |
Collapse
|
3
|
Barták M, Hájek J, Halıcı MG, Bednaříková M, Casanova-Katny A, Váczi P, Puhovkin A, Mishra KB, Giordano D. Resistance of Primary Photosynthesis to Photoinhibition in Antarctic Lichen Xanthoria elegans: Photoprotective Mechanisms Activated during a Short Period of High Light Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2259. [PMID: 37375884 DOI: 10.3390/plants12122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The Antarctic lichen, Xanthoria elegans, in its hydrated state has several physiological mechanisms to cope with high light effects on the photosynthetic processes of its photobionts. We aim to investigate the changes in primary photochemical processes of photosystem II in response to a short-term photoinhibitory treatment. Several chlorophyll a fluorescence techniques: (1) slow Kautsky kinetics supplemented with quenching mechanism analysis; (2) light response curves of photosynthetic electron transport (ETR); and (3) response curves of non-photochemical quenching (NPQ) were used in order to evaluate the phenomenon of photoinhibition of photosynthesis and its consequent recovery. Our findings suggest that X. elegans copes well with short-term high light (HL) stress due to effective photoprotective mechanisms that are activated during the photoinhibitory treatment. The investigations of quenching mechanisms revealed that photoinhibitory quenching (qIt) was a major non-photochemical quenching in HL-treated X. elegans; qIt relaxed rapidly and returned to pre-photoinhibition levels after a 120 min recovery. We conclude that the Antarctic lichen species X. elegans exhibits a high degree of photoinhibition resistance and effective non-photochemical quenching mechanisms. This photoprotective mechanism may help it survive even repeated periods of high light during the early austral summer season, when lichens are moist and physiologically active.
Collapse
Affiliation(s)
- Miloš Barták
- Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Josef Hájek
- Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Mehmet Gökhan Halıcı
- Fen Edebiyat Fakültesi, Biyoloji Bölümü (Department of Biology), Erciyes Üniversitesi (Erciyes University), 38039 Kayseri, Turkey
| | - Michaela Bednaříková
- Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Angelica Casanova-Katny
- Laboratory of Plant Ecophysiology and Climate Change, Environmental Sciences Department, Faculty of Natural Resources, Catholic University of Temuco, Avenida Rudecindo Ortega 02950, Campus San Juan Pablo II, Temuco 481 1123, Chile
| | - Peter Váczi
- Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Anton Puhovkin
- Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, T. Shevchenko blvrd. 16, 01601 Kyiv, Ukraine
- Department of Reproductive System Cryobiology, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska Str. 23, 61016 Kharkiv, Ukraine
| | - Kumud Bandhu Mishra
- Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Laboratory of Ecological Plant Physiology, Czech Academy of Sciences, Global Change Research Institute, Bělidla 4a, 603 00 Brno, Czech Republic
| | - Davide Giordano
- Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Beckett RP, Roach T, Minibayeva F, Werth S. Alternative electron transport pathways contribute to tolerance to high light stress in lichenized algae. PHYSIOLOGIA PLANTARUM 2023; 175:e13904. [PMID: 37002828 DOI: 10.1111/ppl.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The photosynthetic apparatus of lichen photobionts has been well-characterized by chlorophyll fluorescence analysis (e.g., by pulse amplitude modulation [PAM]), which provides a proxy of the activity of photosystem II (PSII) and its antenna. However, such kinetics are unable to directly characterize photosystem I (PSI) activity and the associated alternative electron pathways that may be involved in photoprotection. Instead, PSI can be probed in vivo by near-infrared absorption, measured at the same time as standard chlorophyll fluorescence (e.g., using the WALZ Dual PAM). Here, we used the Dual PAM to investigate cyclic electron flow and photoprotection in a range of mostly temperate lichens sampled from shaded to more open microhabitats. Sun species displayed lower acceptor side limitation of PSI (Y[NA]) early in illumination when compared to shade species, indicative of higher flavodiiron-mediated pseudocyclic electron flow. In response to high irradiance, some lichens accumulate melanin, and Y[NA] was lower and NAD(P)H dehydrogenase (NDH-2)-type cyclic flow was higher in melanised than pale forms. Furthermore, non-photochemical quenching (NPQ) was higher and faster relaxing in shade than sun species, while all lichens displayed high rates of photosynthetic cyclic electron flow. In conclusion, our data suggest that (1) low acceptor side limitation of PSI is important for sun-exposed lichens; (2) NPQ helps shade species tolerate brief exposure to high irradiance; and (3) cyclic electron flow is a prominent feature of lichens regardless of habitat, although NDH-2-type flow is associated with high light acclimation.
Collapse
Affiliation(s)
- Richard Peter Beckett
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
- Open Lab 'Biomarker', Kazan (Volga Region) Federal University, Kazan, Russia
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, Russia
| | - Silke Werth
- Faculty of Biology Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|