1
|
Qu J, Yu D, Gu W, Khalid MHB, Kuang H, Dang D, Wang H, Prasanna B, Zhang X, Zhang A, Zheng H, Guan Y. Genetic architecture of kernel-related traits in sweet and waxy maize revealed by genome-wide association analysis. Front Genet 2024; 15:1431043. [PMID: 39399216 PMCID: PMC11466784 DOI: 10.3389/fgene.2024.1431043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Maize (Zea mays L.) is one of the most important crops worldwide, the kernel size-related traits are the major components of maize grain yield. Methods To dissect the genetic architecture of four kernel-related traits of 100-kernel weight, kernel length, kernel width, and kernel diameter, a genome-wide association study (GWAS) was conducted in the waxy and sweet maize panel comprising of 447 maize inbred lines re-sequenced at the 5× coverage depth. GWAS analysis was carried out with the mixed linear model using 1,684,029 high-quality SNP markers. Results In total, 49 SNPs significantly associated with the four kernel-related traits were identified, including 46 SNPs on chromosome 3, two SNPs on chromosome 4, and one SNP on chromosome 7. Haplotype regression analysis identified 338 haplotypes that significantly affected these four kernel-related traits. Genomic selection (GS) results revealed that a set of 10,000 SNPs and a training population size of 30% are sufficient for the application of GS in waxy and sweet maize breeding for kernel weight and kernel size. Forty candidate genes associated with the four kernel-related traits were identified, including both Zm00001d000707 and Zm00001d044139 expressed in the kernel development tissues and stages with unknown functions. Discussion These significant SNPs and important haplotypes provide valuable information for developing functional markers for the implementation of marker-assisted selection in breeding. The molecular mechanism of Zm00001d000707 and Zm00001d044139 regulating these kernel-related traits needs to be investigated further.
Collapse
Affiliation(s)
- Jingtao Qu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Diansi Yu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Gu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Huiyun Kuang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongdong Dang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hui Wang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuan Guan
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
2
|
Gimode DM, Ochieng G, Deshpande S, Manyasa EO, Kondombo CP, Mikwa EO, Avosa MO, Kunguni JS, Ngugi K, Sheunda P, Jumbo MB, Odeny DA. Validation of sorghum quality control (QC) markers across African breeding lines. THE PLANT GENOME 2024; 17:e20438. [PMID: 38409578 DOI: 10.1002/tpg2.20438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is a cereal crop of critical importance in the semi-arid tropics, particularly in Africa where it is second only to maize (Zea mays L.) by area of cultivation. The International Crops Research Institute for the Semi-Arid Tropics sorghum breeding program for Eastern and Southern Africa is the largest in the region and develops improved varieties for target agro-ecologies. Varietal purity and correct confirmation of new crosses are essential for the integrity and efficiency of a breeding program. We used 49 quality control (QC) kompetitive allele-specific PCR single nucleotide polymorphism (SNP) markers to genotype 716 breeding lines. Note that 46 SNPs were polymorphic with the top 10 most informative revealing polymorphism information content (PIC), minor allele frequency (MAF), and observed heterozygosity (Ho) of 0.37, 0.43, and 0.02, respectively, and explaining 45% of genetic variance within the first two principal components (PC). Thirty-nine markers were highly informative across 16 Burkina Faso breeding lines, out of which the top 10 revealed average PIC, MAF, and Ho of 0.36, 0.39, and 0.05, respectively. Discriminant analysis of principal components done using top 30 markers separated the breeding lines into five major clusters, three of which were distinct. Six of the top 10 most informative markers successfully confirmed hybridization of crosses between genotypes IESV240, KARIMTAMA1, F6YQ212, and FRAMIDA. A set of 10, 20, and 30 most informative markers are recommended for routine QC applications. Future effort should focus on the deployment of these markers in breeding programs for enhanced genetic gain.
Collapse
Affiliation(s)
- Davis M Gimode
- International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | - Grace Ochieng
- International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | - Santosh Deshpande
- International Crops Research Institute for the Semi-arid Tropics-Patancheru, Patancheru, Telangana, India
| | - Eric O Manyasa
- International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | - Clarisse P Kondombo
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Erick O Mikwa
- International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Millicent O Avosa
- International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | | | - Kahiu Ngugi
- Department of Plant Science & Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Patrick Sheunda
- International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
- The Kenya Seed Company Limited, Kitale Branch, Kitale, Kenya
| | - McDonald Bright Jumbo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bamako, Mali
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| |
Collapse
|