1
|
Chen L, Song BN, Yang L, Wang Y, Wang YY, Aou X, He XJ, Zhou SD. Phylogeny, adaptive evolution, and taxonomy of Acronema (Apiaceae): evidence from plastid phylogenomics and morphological data. FRONTIERS IN PLANT SCIENCE 2024; 15:1425158. [PMID: 39220016 PMCID: PMC11362068 DOI: 10.3389/fpls.2024.1425158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Introduction The genus Acronema, belonging to Apiaceae, includes approximately 25 species distributed in the high-altitude Sino-Himalayan region from E Nepal to SW China. This genus is a taxonomically complex genus with often indistinct species boundaries and problematic generic delimitation with Sinocarum and other close genera, largely due to the varied morphological characteristics. Methods To explore the phylogenetic relationships and clarify the limits of the genus Acronema and its related genera, we reconstructed a reliable phylogenetic framework with high support and resolution based on two molecular datasets (plastome data and ITS sequences) and performed morphological analyses. Results Both phylogenetic analyses robustly supported that Acronema was a non-monophyletic group that fell into two clades: Acronema Clade and East-Asia Clade. We also newly sequenced and assembled sixteen Acronema complete plastomes and performed comprehensively comparative analyses for this genus. The comparative results showed that the plastome structure, gene number, GC content, codon bias patterns were high similarity, but varied in borders of SC/IR and we identified six different types of SC/IR border. The SC/IR boundaries of Acronema chienii were significantly different from the other Acronema members which was consistent with the type VI pattern in the genus Tongoloa. We also identified twelve potential DNA barcode regions (ccsA, matK, ndhF, ndhG, psaI, psbI, rpl32, rps15, ycf1, ycf3, psaI-ycf4 and psbM-trnD) for species identification in Acronema. The molecular evolution of Acronema was relatively conservative that only one gene (petG) was found to be under positive selection (ω = 1.02489). Discussion The gene petG is one of the genes involved in the transmission of photosynthetic electron chains during photosynthesis, which plays a crucial role in the process of photosynthesis in plants. This is also a manifestation of the adaptive evolution of plants in high-altitude areas to the environment. In conclusion, our study provides novel insights into the plastome adaptive evolution, phylogeny, and taxonomy of genus Acronema.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wen J, Wu BC, Li HM, Zhou W, Song CF. Plastome structure and phylogenetic relationships of genus Hydrocotyle (apiales): provide insights into the plastome evolution of Hydrocotyle. BMC PLANT BIOLOGY 2024; 24:778. [PMID: 39148054 PMCID: PMC11325595 DOI: 10.1186/s12870-024-05483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The genus Hydrocotyle Tourn. ex L. is a key group for further study on the evolution of Apiales, comprising around 170 species globally. Previous studies mainly focused on separate sections and provided much information about this genus, but its infrageneric relationships are still confusing. In addition, the genetic basis of its adaptive evolution remains poorly understood. To investigate the phylogeny and evolution of the genus, we selected ten representative species covering two of three diversity distribution centers and exhibiting rich morphology diversity. Comparative plastome analysis was conducted to clarify the structural character of Hydrocotyle plastomes. Positive selection analyses were implemented to assess the evolution of the genus. Phylogenetic inferences with protein-coding sequences (CDS) of Hydrocotyle and 17 related species were also performed. RESULTS Plastomes within Hydrocotyle were generally conservative in structure, gene order, and size. A total of 14 regions (rps16-trnK, trnQ-rps16, atpI-atpH, trnC-petN-psbM, ycf3-trnS, accD-psaI-ycf4, petA-psbJ, rps12-rpl20, rpl16 intron, rps3-rpl16 intron, rps9-rpl22, ndhF-rpl32, ndhA intron, and ycf1a) were recognized as hotspot regions within the genus, which suggested to be promising DNA barcodes for global phylogenetic analysis of Hydrocotyle. The ycf15 gene was suggested to be a protein-coding gene for Hydrocotyle species, and it could be used as a DNA barcode to identify Hydrocotyle. In phylogenetic analysis, three monophyletic clades (Clade I, II, III) were identified with evidence of rapid radiation speciation within Clade I. The selective pressure analysis detected that six CDS genes (ycf1b, matK, atpF, accD, rps14, and psbB) of Hydrocotyle species were under positive selection. Within the genus, the last four genes were conservative, suggesting a relation to the unique evolution of the genus in Apiales. Seven genes (atpE, matK, psbH, ycf1a, ycf1b, rpoA, and ycf2) were detected to be under some degree of positive selection in different taxa within the genus Hydrocotyle, indicating their role in the adaptive evolution of species. CONCLUSIONS Our study offers new insights into the phylogeny and adaptive evolution of Hydrocotyle. The plastome sequences could significantly enhance phylogenetic resolution and provide genomic resources and potential DNA markers useful for future studies of the genus.
Collapse
Affiliation(s)
- Jun Wen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Bao-Cheng Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hui-Min Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chun-Feng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China.
| |
Collapse
|
3
|
Song BN, Liu CK, Ren T, Xiao YL, Chen L, Xie DF, He AG, Xu P, Fan X, Zhou SD, He XJ. Plastid phylogenomics contributes to the taxonomic revision of taxa within the genus Sanicula L. and acceptance of two new members of the genus. FRONTIERS IN PLANT SCIENCE 2024; 15:1351023. [PMID: 38916035 PMCID: PMC11194442 DOI: 10.3389/fpls.2024.1351023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/14/2024] [Indexed: 06/26/2024]
Abstract
Introduction The genus Sanicula L. is a taxonomically complicated taxa within Apiaceae, as its high variability in morphology. Although taxonomists have performed several taxonomic revisions for this genus, the interspecific relationships and species boundaries have not been satisfactorily resolved, especially for those endemic to China. This study mainly focused on S. giraldii var. ovicalycina, S. tienmuensis var. pauciflora, and S. orthacantha var. stolonifera and also described two new members of the genus. Methods We newly sequenced sixteen plastomes from nine Sanicula species. Combined with eleven plastomes previously reported by us and one plastome downloaded, we performed a comprehensively plastid phylogenomics analysis of 21 Sanicula taxa. Results and Discussion The comparative results showed that 21 Sanicula plastomes in their structure and features were highly conserved and further justified that two new species were indeed members of Sanicula. Nevertheless, eleven mutation hotspot regions were still identified. Phylogenetic analyses based on plastome data and the ITS sequences strongly supported that these three varieties were clearly distant from three type varieties. The results implied that these three varieties should be considered as three independent species, which were further justified by their multiple morphological characters. Therefore, revising these three varieties into three independent species was reasonable and convincing. Moreover, we also identified and described two new Sanicula species (S. hanyuanensis and S. langaoensis) from Sichuan and Shanxi, China, respectively. Based on their distinct morphological characteristics and molecular phylogenetic analysis, two new species were included in Sanicula. In summary, our study impelled the revisions of Sanicula members and improved the taxonomic system of the genus.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chang-Kun Liu
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lian Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - An-Guo He
- Administration of Zhejiang Dapanshan National Nature Reserve, Zhejiang, China
| | - Ping Xu
- Chengdu Branch of Giant Panda National Park, Chengdu, China
| | - Xing Fan
- Chengdu Branch of Giant Panda National Park, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Liu LJ, Liu CK, Cai J, Deng JJ, He XJ, Zhou SD. The complete plastomes of thirteen Libanotis (Apiaceae, Apioideae) plants: comparative and phylogenetic analyses provide insights into the plastome evolution and taxonomy of Libanotis. BMC PLANT BIOLOGY 2024; 24:106. [PMID: 38342898 PMCID: PMC10860227 DOI: 10.1186/s12870-024-04784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The genus Libanotis Haller ex Zinn, nom. cons., a contentious member of Apiaceae, encompasses numerous economically and medicinally significant plants, comprising approximately 30 species distributed across Eurasia. Despite many previous taxonomic insights into it, phylogenetic studies of the genus are still lacking. And the establishment of a robust phylogenetic framework remains elusive, impeding advancements and revisions in the taxonomic system for this genus. Plastomes with greater variability in their genetic characteristics hold promise for building a more robust Libanotis phylogeny. RESULTS During our research, we sequenced, assembled, and annotated complete plastomes for twelve Libanotis species belong to three sections and two closely related taxa. We conducted a comprehensive comparative analysis through totally thirteen Libanotis plastomes for the genus, including an additional plastome that had been published. Our results suggested that Libanotis plastome was highly conserved between different subclades, while the coding regions were more conserved than the non-coding regions, and the IR regions were more conserved than the single copy regions. Nevertheless, eight mutation hotspot regions were identified among plastomes, which can be considered as candidate DNA barcodes for accurate species identification in Libanotis. The phylogenetic analyses generated a robustly framework for Libanotis and revealed that Libanotis was not a monophyletic group and their all three sections were polygenetic. Libanotis schrenkiana was sister to L. sibirica, type species of this genus, but the remainders scattered within Selineae. CONCLUSION The plastomes of Libanotis exhibited a high degree of conservation and was effective in enhancing the support and resolution of phylogenetic analyses within this genus. Based on evidence from both phylogeny and morphology, we propose the recognition of "Libanotis sensu stricto" and provide taxonomic recommendations for other taxa that previously belonged to Libanotis. In conclusion, our study not only revealed the phylogenetic position and plastid evolution of Libanotis, but also provided new insights into the phylogeny of the family Apiaceae and phylogenetic relationships within the tribe Selineae.
Collapse
Affiliation(s)
- Li-Jia Liu
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, 675000, China
| | - Jing Cai
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiao-Jiao Deng
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Song-Dong Zhou
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
5
|
Song BN, Liu CK, Zhao AQ, Tian RM, Xie DF, Xiao YL, Chen H, Zhou SD, He XJ. Phylogeny and diversification of genus Sanicula L. (Apiaceae): novel insights from plastid phylogenomic analyses. BMC PLANT BIOLOGY 2024; 24:70. [PMID: 38263006 PMCID: PMC10807117 DOI: 10.1186/s12870-024-04750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - An-Qi Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Rong-Ming Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Wang JC, Chen HH, Hsu TW, Hung KH, Huang CC. A taxonomic revision of the genus Angelica (Apiaceae) in Taiwan with a new species A. aliensis. BOTANICAL STUDIES 2024; 65:3. [PMID: 38252347 PMCID: PMC10803708 DOI: 10.1186/s40529-023-00407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Angelica L. sensu lato is a taxonomically complex genus, and many studies have utilized morphological and molecular features to resolve its classification issues. In Taiwan, there are six taxa within Angelica, and their taxonomic treatments have been a subject of controversy. In this study, we conducted a comprehensive analysis incorporating morphological and molecular (cpDNA and nrDNA) characteristics to revise the taxonomic treatments of Angelica in Taiwan. RESULTS As a result of our research, we have revised the classification between A. dahurica var. formosana and A. pubescens and merged two varieties of A. morrisonicola into a single taxon. A new taxon, A. aliensis, has been identified and found to share a close relationship with A. tarokoensis. Based on the morphological and molecular characteristics data, it has been determined that the former three taxa should be grouped into the Eurasian Angelica clade, while the remaining four taxa should belong to the littoral Angelica clade. Furthermore, Angelica species in Taiwan distributed at higher altitudes displayed higher genetic diversity, implying that the central mountain range of Taiwan serves as a significant reservoir of plant biodiversity. Genetic drift, such as bottlenecks, has been identified as a potential factor leading to the fixation or reduction of genetic diversity of populations in most Angelica species. We provide key to taxa, synopsis, phenology, and distribution for each taxon of Taiwan. CONCLUSIONS Our comprehensive analysis of morphological and molecular features has shed light on the taxonomic complexities within Angelica in Taiwan, resolving taxonomic issues and providing valuable insights into the phylogenetic relationships of Angelica in Taiwan.
Collapse
Affiliation(s)
- Jenn-Che Wang
- Department of Life Science, National Taiwan Normal University, Taipei, 106, Taiwan
| | - Hung-Hsin Chen
- Department of Life Science, National Taiwan Normal University, Taipei, 106, Taiwan
| | - Tsai-Wen Hsu
- Wild Plants Division, Taiwan Biodiversity Research Institute, Nantou, 552, Taiwan
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
- Forestry and Biodiversity Research Center, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| | - Chi-Chun Huang
- Wild Plants Division, Taiwan Biodiversity Research Institute, Nantou, 552, Taiwan.
| |
Collapse
|