1
|
Arnanz MA, Ruiz de Martín Esteban S, Martínez Relimpio AM, Rimmerman N, Tweezer Zaks N, Grande MT, Romero J. Effects of Chronic, Low-Dose Cannabinoids, Cannabidiol, Delta-9-Tetrahydrocannabinol and a Combination of Both, on Amyloid Pathology in the 5xFAD Mouse Model of Alzheimer's Disease. Cannabis Cannabinoid Res 2024; 9:1312-1325. [PMID: 37862567 DOI: 10.1089/can.2023.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Background: There is an urgent need for novel therapies to treat Alzheimer's disease. Among others, the use of cannabinoids such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) has been proposed as a putative approach based on their anti-inflammatory effects. Methods: The present work was designed to explore the effects of chronic (28 days) treatment with low doses of cannabinoids: CBD (0.273 mg/kg), THC (0.205 mg/kg) or a combination of both (CBD:THC; 0.273 mg/kg:0.205 mg/kg) in the 5xFAD mouse model of AD. Results: Our data revealed that THC-treated 5xFAD mice (but not other treatment groups) exhibited anxiogenic and depressant-like behavior. A significant improvement in spatial memory was observed only in the CBD:THC-treated group. Interestingly, all cannabinoid-treated groups showed significantly increased cortical levels of the insoluble form of beta amyloid 1-42. These effects were not accompanied by changes in molecular parameters of inflammation at the mRNA or protein level. Conclusions: These data reveal differential effects of chronic, low-dose cannabinoids and point to a role of these cannabinoids in the processing of amyloid peptides in the brains of 5xFAD mice.
Collapse
Affiliation(s)
- María Andrea Arnanz
- School of Pharmacy, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | | | - Neta Rimmerman
- M.H MediCane Ltd., Kfar Saba, Israel
- MediCane R&D Ltd., Kfar Saba, Israel
| | - Nurit Tweezer Zaks
- M.H MediCane Ltd., Kfar Saba, Israel
- MediCane R&D Ltd., Kfar Saba, Israel
| | - María Teresa Grande
- School of Pharmacy, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Julián Romero
- School of Pharmacy, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
2
|
Banerjee S, Saha D, Sharma R, Jaidee W, Puttarak P, Chaiyakunapruk N, Chaoroensup R. Phytocannabinoids in neuromodulation: From omics to epigenetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118201. [PMID: 38677573 DOI: 10.1016/j.jep.2024.118201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Recent developments in metabolomics, transcriptomic and epigenetics open up new horizons regarding the pharmacological understanding of phytocannabinoids as neuromodulators in treating anxiety, depression, epilepsy, Alzheimer's, Parkinson's disease and autism. METHODS The present review is an extensive search in public databases, such as Google Scholar, Scopus, the Web of Science, and PubMed, to collect all the literature about the neurobiological roles of cannabis extract, cannabidiol, 9-tetrahydrocannabinol specially focused on metabolomics, transcriptomic, epigenetic, mechanism of action, in different cell lines, induced animal models and clinical trials. We used bioinformatics, network pharmacology and enrichment analysis to understand the effect of phytocannabinoids in neuromodulation. RESULTS Cannabidomics studies show wide variability of metabolites across different strains and varieties, which determine their medicinal and abusive usage, which is very important for its quality control and regulation. CB receptors interact with other compounds besides cannabidiol and Δ9-tetrahydrocannabinol, like cannabinol and Δ8-tetrahydrocannabinol. Phytocannabinoids interact with cannabinoid and non-cannabinoid receptors (GPCR, ion channels, and PPAR) to improve various neurodegenerative diseases. However, its abuse because of THC is also a problem found across different epigenetic and transcriptomic studies. Network enrichment analysis shows CNR1 expression in the brain and its interacting genes involve different pathways such as Rap1 signalling, dopaminergic synapse, and relaxin signalling. CBD protects against diseases like epilepsy, depression, and Parkinson's by modifying DNA and mitochondrial DNA in the hippocampus. Network pharmacology analysis of 8 phytocannabinoids revealed an interaction with 10 (out of 60) targets related to neurodegenerative diseases, with enrichment of ErbB and PI3K-Akt signalling pathways which helps in ameliorating neuro-inflammation in various neurodegenerative diseases. The effects of phytocannabinoids vary across sex, disease state, and age which suggests the importance of a personalized medicine approach for better success. CONCLUSIONS Phytocannabinoids present a range of promising neuromodulatory effects. It holds promise if utilized in a strategic way towards personalized neuropsychiatric treatment. However, just like any drug irrational usage may lead to unforeseen negative effects. Exploring neuro-epigenetics and systems pharmacology of major and minor phytocannabinoid combinations can lead to success.
Collapse
Affiliation(s)
- Subhadip Banerjee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand
| | - Debolina Saha
- School of Bioscience and Engineering, Jadavpur University, Kolkata, 700032, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Wuttichai Jaidee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand
| | - Panupong Puttarak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | | | - Rawiwan Chaoroensup
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| |
Collapse
|
3
|
Van Nguyen H, Ha NX, Nguyen DP, Pham TH, Nguyen MT, Thi Nguyen HM. A theoretical screening of phytochemical constituents from Millettia brandisiana as inhibitors against acetylcholinesterase. Phys Chem Chem Phys 2024; 26:16898-16909. [PMID: 38833268 DOI: 10.1039/d3cp05350d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Alzheimer's disease is one of the causes associated with the early stages of dementia. Nowadays, the main treatment available is to inhibit the actions of the acetylcholinesterase (AChE) enzyme, which has been identified as responsible for the disease. In this study, computational methods were used to examine the structure and therapeutic ability of chemical compounds extracted from Millettia brandisiana natural products against AChE. This plant is commonly known as a traditional medicine in Vietnam and Thailand for the treatment of several diseases. Furthermore, machine learning helped us narrow down the choice of 85 substances for further studies by molecular docking and molecular dynamics simulations to gain deeper insights into the interactions between inhibitors and disease proteins. Of the five top-choice substances, γ-dimethylallyloxy-5,7,2,5-tetramethoxyisoflavone emerges as a promising substance due to its large free binding energy to AChE and the high thermodynamic stability of the resulting complex.
Collapse
Affiliation(s)
- Hue Van Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam.
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Duy Phuong Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam.
| | - Tho Hoan Pham
- Faculty of Information Technology and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Hue Minh Thi Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam.
| |
Collapse
|
4
|
Patil N, Dhariwal R, Mohammed A, Wei LS, Jain M. Network pharmacology-based approach to elucidate the pharmacologic mechanisms of natural compounds from Dictyostelium discoideum for Alzheimer's disease treatment. Heliyon 2024; 10:e28852. [PMID: 38644825 PMCID: PMC11033062 DOI: 10.1016/j.heliyon.2024.e28852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly becoming a major public health concern in our society. While many studies have explored the use of natural polyketides, alkaloids, and other chemical components in AD treatment, there is an urgent need to clarify the concept of multi-target treatment for AD. This study focuses on using network pharmacology approach to elucidate how secondary metabolites from Dictyostelium discoideum affect AD through multi-target or indirect mechanisms. The secondary metabolites produced by D. discoideum during their development were obtained from literature sources and PubChem. Disease targets were selected using GeneCards, DisGeNET, and CTD databases, while compound-based targets were identified through Swiss target prediction and Venn diagrams were used to find intersections between these targets. A network depicting the interplay among disease, drugs, active ingredients, and key target proteins (PPI network) was formed utilizing the STRING (Protein-Protein Interaction Networks Functional Enrichment Analysis) database. To anticipate the function and mechanism of the screened compounds, GO and KEGG enrichment analyses were conducted and visually presented using graphs and bubble charts. After the screening phase, the top interacting targets in the PPI network and the compound with the most active target were chosen for subsequent molecular docking and molecular dynamic simulation studies. This study identified nearly 50 potential targeting genes for each of the screened compounds and revealed multiple signaling pathways. Among these pathways, the inflammatory pathway stood out. COX-2, a receptor associated with neuroinflammation, showed differential expression in various stages of AD, particularly in pyramidal neurons during the early stages of the disease. This increase in COX-2 expression is likely induce by higher levels of IL-1, which is associated with neuritic plaques and microglial cells in AD. Molecular docking investigations demonstrated a strong binding interaction between the terpene compound PQA-11 and the neuroinflammatory receptor COX2, with a substantial binding affinity of -8.4 kcal/mol. Subsequently, a thorough analysis of the docked complex (COX2-PQA11) through Molecular Dynamics Simulation showed lower RMSD, minimal RMSF fluctuations, and a reduced total energy of -291.35 kJ/mol compared to the standard drug. These findings suggest that the therapeutic effect of PQA-11 operates through the inflammatory pathway, laying the groundwork for further in-depth research into the role of secondary metabolites in AD treatment.
Collapse
Affiliation(s)
- Nil Patil
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Rupal Dhariwal
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Arifullah Mohammed
- Department of Agriculture, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, 17600, Malaysia
| | - Lee Seong Wei
- Department of Agriculture, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, 17600, Malaysia
| | - Mukul Jain
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| |
Collapse
|
5
|
Vasquez R, Batista L, Cuya T. Computational Study on the Enzyme-Ligand Relationship between Cannabis Phytochemicals and Human Acetylcholinesterase: Implications in Alzheimer's Disease. J Phys Chem B 2023; 127:8780-8795. [PMID: 37815196 DOI: 10.1021/acs.jpcb.3c04315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cannabis has shown promise in treating various neurological disorders, including Alzheimer's disease (AD). AD is a devastating neurodegenerative disorder that affects millions of people worldwide. Current treatments for AD are limited and are not very effective. This study investigated the enzyme-ligand relationship between nine active components of cannabis and human acetylcholinesterase (HuAChE) enzyme, which is significant in AD. Specifically, computational methods such as quantum mechanics, molecular docking, molecular dynamics, and free energy calculations were used to identify the cannabis phytochemicals with the highest HuAChE affinity and to understand the specific binding mechanisms involved. Our results showed that cannabichromene and cannabigerol were the cannabis phytochemicals with the highest affinity for HuAChE, with cannabichromene exhibiting the greatest binding energy. However, both substances showed lower affinity than that of the pharmaceutical drug donepezil. This study suggests that cannabichromene has a specific affinity for the peripheral anionic site (PAS) and acyl-binding pocket (ABP), while cannabigerol predominantly binds to PAS. Also, it was found that cannabichromene has a specific affinity for PAS and ABP, while cannabigerol predominantly binds to PAS. Our findings suggest that cannabichromene and cannabigerol are potential therapeutic agents, but further research is needed to validate their effectiveness. The specific binding mechanisms identified may also provide helpful information for the design of more effective cannabis-based drugs. Overall, this study provides valuable insights into the potential of cannabis-based drugs for treating neurological diseases.
Collapse
Affiliation(s)
- Roxanne Vasquez
- Faculty of Technology, Department of Chemistry and Environment, University of the State of Rio de Janeiro, Resende, Rio de Janeiro 27537-000, Brazil
| | - Leonardo Batista
- Faculty of Technology, Department of Chemistry and Environment, University of the State of Rio de Janeiro, Resende, Rio de Janeiro 27537-000, Brazil
| | - Teobaldo Cuya
- Faculty of Technology, Department of Mathematics, Physics and Computation, University of the State of Rio de Janeiro, Resende, Rio de Janeiro 27537-000, Brazil
| |
Collapse
|
6
|
Mazzeo F, Meccariello R. Cannabis and Paternal Epigenetic Inheritance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095663. [PMID: 37174181 PMCID: PMC10177768 DOI: 10.3390/ijerph20095663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Cannabis is the most widely used illicit drug in Western counties and its abuse is particularly high in male adolescents and young adults. Its main psychotropic component, the cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), interferes in the endogenous endocannabinoid system. This signaling system is involved in the control of many biological activities, including the formation of high-quality male gametes. Direct adverse effects of Δ9-THC in male reproduction are well known in both animal models and humans. Nevertheless, the possibility of long-term effects due to epigenetic mechanisms has recently been reported. In this review, we summarize the main advances in the field suggesting the need to pay attention to the possible long-term epigenetic risks for the reproductive health of cannabis users and the health of their offspring.
Collapse
Affiliation(s)
- Filomena Mazzeo
- Dipartimento di Scienze Economiche, Giuridiche, Informatiche e Motorie, Università di Napoli Parthenope, Nola, 80035 Naples, Italy
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples "Parthenope", Nola, 80133 Naples, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy
- Department of Movement Sciences and Wellbeing, University "Parthenope", 80133 Naples, Italy
| |
Collapse
|