1
|
Alves-Silva JM, Zuzarte M, Salgueiro L, Cocco E, Ghiani V, Falconieri D, Maccioni D, Maxia A. Agroprospecting of Biowastes: Globe Artichoke ( Cynara scolymus L. Cultivar Tema, Asteraceae) as Potential Source of Bioactive Compounds. Molecules 2024; 29:3960. [PMID: 39203039 PMCID: PMC11356890 DOI: 10.3390/molecules29163960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Artichokes (Cynara scolymus L.) are valuable foods, thanks to their health benefits, but they generate significant waste during their production, harvesting, and processing, which poses sustainability issues. This study applied an agroprospecting approach to convert Tema artichoke biowaste (TB) into valuable resources, starting from a global perspective of the production chain to the targeted applications based on chemical and biological analysis. The major TB was identified in the outer bracts of the immature flower heads, which were collected throughout the harvesting season, extracted, and analyzed. The most abundant compounds were phenolic acids including chlorogenic acid and caffeoylquinic derivatives. Among flavonoids, cynaroside was the most abundant compound. Multivariate analysis distinguished batches by collection period, explaining 77.7% of the variance, with most compounds increasing in concentration later in the harvest season. Subsequently, TB extracts were analyzed for their potential in wound healing and anti-aging properties. Fibroblasts were used to assess the effect of selected extracts on cell migration through a scratch wound assay and on cellular senescence induced by etoposide. The results show a significant decrease in senescence-associated β-galactosidase activity, γH2AX nuclear accumulation, and both p53 and p21 protein levels. Overall, this study ascribes relevant anti-skin aging effects to TB, thus increasing its industrial value in cosmeceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (L.S.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Mónica Zuzarte
- Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (L.S.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (L.S.)
- Department of Chemical Engineering, Chemical Engineering and Renewable Resources for Sustainability (CERES), University of Coimbra, 3030-790 Coimbra, Portugal
| | - Emma Cocco
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| | | | - Danilo Falconieri
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| | - Delia Maccioni
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| | - Andrea Maxia
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| |
Collapse
|
2
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|