1
|
Falcioni R, de Oliveira RB, Chicati ML, Antunes WC, Demattê JAM, Nanni MR. Fluorescence and Hyperspectral Sensors for Nondestructive Analysis and Prediction of Biophysical Compounds in the Green and Purple Leaves of Tradescantia Plants. SENSORS (BASEL, SWITZERLAND) 2024; 24:6490. [PMID: 39409529 PMCID: PMC11479283 DOI: 10.3390/s24196490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
The application of non-imaging hyperspectral sensors has significantly enhanced the study of leaf optical properties across different plant species. In this study, chlorophyll fluorescence (ChlF) and hyperspectral non-imaging sensors using ultraviolet-visible-near-infrared shortwave infrared (UV-VIS-NIR-SWIR) bands were used to evaluate leaf biophysical parameters. For analyses, principal component analysis (PCA) and partial least squares regression (PLSR) were used to predict eight structural and ultrastructural (biophysical) traits in green and purple Tradescantia leaves. The main results demonstrate that specific hyperspectral vegetation indices (HVIs) markedly improve the precision of partial least squares regression (PLSR) models, enabling reliable and nondestructive evaluations of plant biophysical attributes. PCA revealed unique spectral signatures, with the first principal component accounting for more than 90% of the variation in sensor data. High predictive accuracy was achieved for variables such as the thickness of the adaxial and abaxial hypodermis layers (R2 = 0.94) and total leaf thickness, although challenges remain in predicting parameters such as the thickness of the parenchyma and granum layers within the thylakoid membrane. The effectiveness of integrating ChlF and hyperspectral technologies, along with spectroradiometers and fluorescence sensors, in advancing plant physiological research and improving optical spectroscopy for environmental monitoring and assessment. These methods offer a good strategy for promoting sustainability in future agricultural practices across a broad range of plant species, supporting cell biology and material analyses.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| | - José Alexandre M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| |
Collapse
|
2
|
Fiorio PR, Silva CAAC, Rizzo R, Demattê JAM, Luciano ACDS, Silva MAD. Prediction of leaf nitrogen in sugarcane ( Saccharum spp.) by Vis-NIR-SWIR spectroradiometry. Heliyon 2024; 10:e26819. [PMID: 38439847 PMCID: PMC10909708 DOI: 10.1016/j.heliyon.2024.e26819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Nitrogen is one of the essential nutrients for the production of agricultural crops, participating in a complex interaction among soil, plant and the atmosphere. Therefore, its monitoring is important both economically and environmentally. The aim of this work was to estimate the leaf nitrogen contents in sugarcane from hyperspectral reflectance data during different vegetative stages of the plant. The assessments were performed from an experiment designed in completely randomized blocks, with increasing nitrogen doses (0, 60, 120 and 180 kg ha-1). The acquisition of the spectral data occurred at different stages of crop development (67, 99, 144, 164, 200, 228, 255 and 313 days after cutting; DAC). In the laboratory, the hyperspectral responses of the leaves and the Leaf Nitrogen Contents (LNC) were obtained. The hyperspectral data and the LNC values were used to generate spectral models employing the technique of Partial Least Squares Regression (PLSR) Analysis, also with the calculation of the spectral bands of greatest relevance, by the Variable Importance in Projection (VIP). In general, the increase in LNC promoted a smaller reflectance in all wavelengths in the visible (400-680 nm). Acceptable models were obtained (R2 > 0.70 and RMSE <1.41 g kg-1), the most robust of which were those generated from spectra in the visible (400-680 nm) and red-edge (680-750 nm), with values of R2 > 0.81 and RMSE <1.24 g kg-1. An independent validation, leave-one-date-out cross validation (LOOCV), was performed using data from other collections, which confirmed the robustness and the possibility of LNC prediction in new data sets, derived, for instance, from samplings subsequent to the period of study.
Collapse
Affiliation(s)
- Peterson Ricardo Fiorio
- Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture, University of São Paulo, 13418900, Piracicaba, São Paulo, Brazil
| | - Carlos Augusto Alves Cardoso Silva
- Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture, University of São Paulo, 13418900, Piracicaba, São Paulo, Brazil
| | - Rodnei Rizzo
- Environmental Analysis and Geoprocessing Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - José Alexandre Melo Demattê
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, 13418900, Piracicaba, São Paulo, Brazil
| | - Ana Cláudia dos Santos Luciano
- Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture, University of São Paulo, 13418900, Piracicaba, São Paulo, Brazil
| | - Marcelo Andrade da Silva
- Department of Exact Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, 13418900, Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Neri I, Caponi S, Bonacci F, Clementi G, Cottone F, Gammaitoni L, Figorilli S, Ortenzi L, Aisa S, Pallottino F, Mattarelli M. Real-Time AI-Assisted Push-Broom Hyperspectral System for Precision Agriculture. SENSORS (BASEL, SWITZERLAND) 2024; 24:344. [PMID: 38257437 PMCID: PMC10820832 DOI: 10.3390/s24020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
In the ever-evolving landscape of modern agriculture, the integration of advanced technologies has become indispensable for optimizing crop management and ensuring sustainable food production. This paper presents the development and implementation of a real-time AI-assisted push-broom hyperspectral system for plant identification. The push-broom hyperspectral technique, coupled with artificial intelligence, offers unprecedented detail and accuracy in crop monitoring. This paper details the design and construction of the spectrometer, including optical assembly and system integration. The real-time acquisition and classification system, utilizing an embedded computing solution, is also described. The calibration and resolution analysis demonstrates the accuracy of the system in capturing spectral data. As a test, the system was applied to the classification of plant leaves. The AI algorithm based on neural networks allows for the continuous analysis of hyperspectral data relative up to 720 ground positions at 50 fps.
Collapse
Affiliation(s)
- Igor Neri
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Silvia Caponi
- Materials Foundry (IOM-CNR), National Research Council, c/o Department of Physics and Geology, Via A. Pascoli, 06123 Perugia, Italy
| | - Francesco Bonacci
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Giacomo Clementi
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Francesco Cottone
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Luca Gammaitoni
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Simone Figorilli
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, Monterotondo, 00015 Rome, Italy
| | - Luciano Ortenzi
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, Monterotondo, 00015 Rome, Italy
- Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Via S. Camillo De Lellis, Via Angelo Maria Ricci, 35a-02100 Rieti, 01100 Viterbo, Italy
| | - Simone Aisa
- Materials Foundry (IOM-CNR), National Research Council, c/o Department of Physics and Geology, Via A. Pascoli, 06123 Perugia, Italy
| | - Federico Pallottino
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, Monterotondo, 00015 Rome, Italy
| | - Maurizio Mattarelli
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy
| |
Collapse
|
4
|
Cembrowska-Lech D, Krzemińska A, Miller T, Nowakowska A, Adamski C, Radaczyńska M, Mikiciuk G, Mikiciuk M. An Integrated Multi-Omics and Artificial Intelligence Framework for Advance Plant Phenotyping in Horticulture. BIOLOGY 2023; 12:1298. [PMID: 37887008 PMCID: PMC10603917 DOI: 10.3390/biology12101298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
This review discusses the transformative potential of integrating multi-omics data and artificial intelligence (AI) in advancing horticultural research, specifically plant phenotyping. The traditional methods of plant phenotyping, while valuable, are limited in their ability to capture the complexity of plant biology. The advent of (meta-)genomics, (meta-)transcriptomics, proteomics, and metabolomics has provided an opportunity for a more comprehensive analysis. AI and machine learning (ML) techniques can effectively handle the complexity and volume of multi-omics data, providing meaningful interpretations and predictions. Reflecting the multidisciplinary nature of this area of research, in this review, readers will find a collection of state-of-the-art solutions that are key to the integration of multi-omics data and AI for phenotyping experiments in horticulture, including experimental design considerations with several technical and non-technical challenges, which are discussed along with potential solutions. The future prospects of this integration include precision horticulture, predictive breeding, improved disease and stress response management, sustainable crop management, and exploration of plant biodiversity. The integration of multi-omics and AI holds immense promise for revolutionizing horticultural research and applications, heralding a new era in plant phenotyping.
Collapse
Affiliation(s)
- Danuta Cembrowska-Lech
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland;
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland; (A.K.); (T.M.)
| | - Adrianna Krzemińska
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland; (A.K.); (T.M.)
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland;
| | - Tymoteusz Miller
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland; (A.K.); (T.M.)
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Anna Nowakowska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland;
| | - Cezary Adamski
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland;
| | | | - Grzegorz Mikiciuk
- Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland;
| | - Małgorzata Mikiciuk
- Department of Bioengineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland;
| |
Collapse
|
5
|
Falcioni R, Santos GLAAD, Crusiol LGT, Antunes WC, Chicati ML, Oliveira RBD, Demattê JAM, Nanni MR. Non-Invasive Assessment, Classification, and Prediction of Biophysical Parameters Using Reflectance Hyperspectroscopy. PLANTS (BASEL, SWITZERLAND) 2023; 12:2526. [PMID: 37447089 DOI: 10.3390/plants12132526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Hyperspectral technology offers significant potential for non-invasive monitoring and prediction of morphological parameters in plants. In this study, UV-VIS-NIR-SWIR reflectance hyperspectral data were collected from Nicotiana tabacum L. plants using a spectroradiometer. These plants were grown under different light and gibberellic acid (GA3) concentrations. Through spectroscopy and multivariate analyses, key growth parameters, such as height, leaf area, energy yield, and biomass, were effectively evaluated based on the interaction of light with leaf structures. The shortwave infrared (SWIR) bands, specifically SWIR1 and SWIR2, showed the strongest correlations with these growth parameters. When classifying tobacco plants grown under different GA3 concentrations in greenhouses, artificial intelligence (AI) and machine learning (ML) algorithms were employed, achieving an average accuracy of over 99.1% using neural network (NN) and gradient boosting (GB) algorithms. Among the 34 tested vegetation indices, the photochemical reflectance index (PRI) demonstrated the strongest correlations with all evaluated plant phenotypes. Partial least squares regression (PLSR) models effectively predicted morphological attributes, with R2CV values ranging from 0.81 to 0.87 and RPDP values exceeding 2.09 for all parameters. Based on Pearson's coefficient XYZ interpolations and HVI algorithms, the NIR-SWIR band combination proved the most effective for predicting height and leaf area, while VIS-NIR was optimal for optimal energy yield, and VIS-VIS was best for predicting biomass. To further corroborate these findings, the SWIR bands for certain morphological characteristic wavelengths selected with s-PLS were most significant for SWIR1 and SWIR2, while i-PLS showed a more uniform distribution in VIS-NIR-SWIR bands. Therefore, SWIR hyperspectral bands provide valuable insights into developing alternative bands for remote sensing measurements to estimate plant morphological parameters. These findings underscore the potential of remote sensing technology for rapid, accurate, and non-invasive monitoring within stationary high-throughput phenotyping systems in greenhouses. These insights align with advancements in digital and precision technology, indicating a promising future for research and innovation in this field.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | | | - Luis Guilherme Teixeira Crusiol
- Embrapa Soja (National Soybean Research Center-Brazilian Agricultural Research Corporation), Rodovia Carlos João Strass, s/nº, Distrito de Warta, Londrina 86001-970, Paraná, Brazil
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | - José A M Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| |
Collapse
|
6
|
Falcioni R, Antunes WC, Demattê JAM, Nanni MR. Reflectance Spectroscopy for the Classification and Prediction of Pigments in Agronomic Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2347. [PMID: 37375972 DOI: 10.3390/plants12122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Reflectance spectroscopy, in combination with machine learning and artificial intelligence algorithms, is an effective method for classifying and predicting pigments and phenotyping in agronomic crops. This study aims to use hyperspectral data to develop a robust and precise method for the simultaneous evaluation of pigments, such as chlorophylls, carotenoids, anthocyanins, and flavonoids, in six agronomic crops: corn, sugarcane, coffee, canola, wheat, and tobacco. Our results demonstrate high classification accuracy and precision, with principal component analyses (PCAs)-linked clustering and a kappa coefficient analysis yielding results ranging from 92 to 100% in the ultraviolet-visible (UV-VIS) to near-infrared (NIR) to shortwave infrared (SWIR) bands. Predictive models based on partial least squares regression (PLSR) achieved R2 values ranging from 0.77 to 0.89 and ratio of performance to deviation (RPD) values over 2.1 for each pigment in C3 and C4 plants. The integration of pigment phenotyping methods with fifteen vegetation indices further improved accuracy, achieving values ranging from 60 to 100% across different full or range wavelength bands. The most responsive wavelengths were selected based on a cluster heatmap, β-loadings, weighted coefficients, and hyperspectral vegetation index (HVI) algorithms, thereby reinforcing the effectiveness of the generated models. Consequently, hyperspectral reflectance can serve as a rapid, precise, and accurate tool for evaluating agronomic crops, offering a promising alternative for monitoring and classification in integrated farming systems and traditional field production. It provides a non-destructive technique for the simultaneous evaluation of pigments in the most important agronomic plants.
Collapse
Affiliation(s)
- Renan Falcioni
- Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil
| | - Werner Camargos Antunes
- Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil
| | - José Alexandre M Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, SP, Brazil
| | - Marcos Rafael Nanni
- Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil
| |
Collapse
|