1
|
Sharafi H, Alirezalu A, Liu SQ, Karami A, Moradi M. Postbiotics-enriched flaxseed mucilage coating: A solution to improving postharvest quality and shelf life of strawberry. Int J Biol Macromol 2024; 265:131398. [PMID: 38599903 DOI: 10.1016/j.ijbiomac.2024.131398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
This research aimed to assess the effects of flaxseed mucilage (Mu) coatings supplemented with postbiotics (P) obtained from Lactobacillus acidophilus LA-5 on various physical, biochemical, and microbial characteristics of strawberry fruits. Strawberry fruits were immersed for 2 min in Mu2.5 (2.5 % mucilage in distilled water), Mu5 (5 % mucilage in distilled water), P-Mu2.5 (2.5 % mucilage in undiluted postbiotics) and P-Mu5 (5 % mucilage in undiluted postbiotics) solutions and were stored at 4 °C and 85 RH for 12 days. All coatings were effective in reducing fungal count compared to the uncoated control fruits. Mu5 coating exhibited the highest efficacy, reducing fungal count by 2.85 log10 CFU/g, followed by Mu2.5 (1.47 log10 CFU/g reduction) and P-Mu2.5 groups (0.90 log10 CFU/g reduction). The fruits coated with edible coatings showed significant delays in the change of weight loss, pH, and total soluble solids as compared to the uncoated fruits. The coating containing postbiotics i.e., P-Mu5 also showed a significant increase in the total phenolic contents, total flavonoid content, antioxidant capacity, and total anthocyanin content at the end of storage relative to the uncoated fruits. Thus, Mu and P-Mu coatings may be a useful approach to maintaining the postharvest quality of strawberry fruits during cold storage.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, 1177 Urmia, Iran.
| | - Shao-Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Azad Karami
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, 1177 Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| |
Collapse
|
2
|
Jarošová M, Lorenc F, Bedrníček J, Petrášková E, Bjelková M, Bártová V, Jarošová E, Zdráhal Z, Kyselka J, Smetana P, Kadlec J, Stupková A, Bárta J. Comparison of Yield Characteristics, Chemical Composition, Lignans Content and Antioxidant Potential of Experimentally Grown Six Linseed (Linum usitatissimum L.) Cultivars. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:159-165. [PMID: 38236453 DOI: 10.1007/s11130-023-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
Linseed represents a rich source of nutritional, functional and health-beneficial compounds. Nevertheless, the chemical composition and content of bioactive compounds may be quite variable and potentially affected by various factors, including genotype and the environment. In this study, the proximate chemical composition, lignans content and antioxidant potential of six experimentally grown linseed cultivars were assessed and compared. A diagonal cultivation trial in the University of South Bohemia Experimental Station in České Budějovice, Czech Republic, was established in three subsequent growing seasons (2018, 2019 and 2020). The results showed that the cultivar and growing conditions influenced most studied parameters. The lack of precipitation in May and June 2019 negatively affected the seed yield and the level of secoisolariciresinol diglucoside but did not decrease the crude protein content, which was negatively related to the oil content. The newly developed method for lignans analysis allowed the identification and quantification of secoisolariciresinol diglucoside and matairesinol. Their content correlated positively with the total polyphenol content and antioxidant assays (DPPH and ABTS radical scavenging activity), indicating the significant contribution to the biofunctional properties of linseed. On the other hand, we did not detect minor linseed lignans, pinoresinol and lariciresinol. The results of this study showed the importance of cultivar and growing conditions factors on the linseed chemical composition and the lignans content, determining its nutritional and medicinal properties.
Collapse
Affiliation(s)
- Markéta Jarošová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| | - František Lorenc
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic.
| | - Jan Bedrníček
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic
| | - Eva Petrášková
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic
| | - Marie Bjelková
- Department of Legumes and Technical Crops, Agritec Plant Research, Ltd. Zemědělská 2520, Šumperk, 787 01, Czech Republic
| | - Veronika Bártová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| | - Eva Jarošová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre of Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Jan Kyselka
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology Prague, University of Chemistry and Technology, Technická 5, Prague, 166 28, Czech Republic
| | - Pavel Smetana
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic
| | - Jaromír Kadlec
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic
| | - Adéla Stupková
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| | - Jan Bárta
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| |
Collapse
|