1
|
Casanova LM, do Nascimento Júnior JX, de Souza JE, do Couto Rodrigues R, Araújo AB, Arrais E, de Oliveira Silva LC, Bessa Menezes YM, Yien RMK, Tinoco LW, Costa SS, Sola-Penna M, Zancan P. Biochemometrics-Based Identification of Gallic Acid and Gallic Acid Galloylglucosides From Kalanchoe fedtschenkoi With Cytotoxic Effects on Cultured Melanoma Cells. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39587398 DOI: 10.1002/pca.3480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Kalanchoe Adans. (Crassulaceae) is a genus of widespread succulent plants extensively studied for their biological activities. Plants of the genus are considered a potential source of antitumor agents. OBJECTIVE This study aimed to investigate the effect of an aqueous extract and fractions of leaves of Kalanchoe fedtschenkoi R. Hamet & H. Perrier on the proliferation of melanoma cell lines employing an NMR-based biochemometric approach complemented with HPLC-DAD and UHPLC-MS/MS analyses. MATERIAL AND METHODS The n-butanol fraction (KFBuOH) from K. fedtschenkoi aqueous leaf extract, which decreased B16F10 murine melanoma cells viability by 65% at 100 μg/mL, was fractionated with RP-18 SPE and Sephadex LH-20 column chromatography. The fractions were analyzed by 1H-NMR spectroscopy and submitted to MTT cytotoxicity assays against cultured melanoma cells. Orthogonal projection to latent structures discriminant analysis (OPLS-DA) was used to correlate their 1H-NMR profile and cytotoxic activity. RESULTS This strategy enabled the identification of gallic acid (1) and two gallic acid glucosides-gallic acid 4-O-(6'-O-galloyl)-glucopyranoside) (2) and gallic acid 3-O-(6'-O-galloyl)-glucopyranoside) (3)-as putative bioactive substances, which was further corroborated by subsequent assays with enriched fractions and a gallic acid standard. The fractions enriched in gallic acid (KFA) and gallic acid galloylglucosides (KFB) evidenced selective cytotoxicity towards B16F10 cells (IC50 43.0 and 56.6 μg/mL, respectively) and MV3 human melanoma cells (IC50 93.6 and 66.1 μg/mL, respectively). CONCLUSION These results suggest a potential therapeutic use for K. fedtschenkoi in melanoma treatment. This is the first study to evidence a potential antitumor activity for gallic acid galloylglucosides.
Collapse
Affiliation(s)
- Livia Marques Casanova
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Jacqueline Elis de Souza
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Raul do Couto Rodrigues
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Amanda Bandeira Araújo
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emmanuel Arrais
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Yasmim M Bessa Menezes
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raíssa Mara Kao Yien
- Laboratory of Natural Products and Biological Assay, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luzineide Wanderley Tinoco
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sônia Soares Costa
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Zancan
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Ferreira CP, de Lima MDC, da Silva JG, Peixoto Araujo NM. Nutritional composition, phenolic compounds and biological activities of selected unconventional food plants. Food Res Int 2024; 191:114643. [PMID: 39059900 DOI: 10.1016/j.foodres.2024.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024]
Abstract
This review highlights the nutritional content, phytochemical compounds, and biological properties of three unconventional food plants consumed in the Amazon: ora-pro-nóbis (Pereskia aculeata Mill.), taioba (Xanthosoma sagittifolium), and vitória-régia (Victoria amazonica). These plants show significant nutritional, functional, and economic potential, which can enhance the intake of daily nutrients, energy, and bioactive compounds. Ora-pro-nóbis is a rich source of caftaric acid, quercetin, and isorhamnetin; taioba contains syringic acid, caffeic acid, and quercetin; and vitória-régia shows cinnamic acid, caffeic acid, and sinapic acid in its composition. These compounds confer antioxidant, anticancer, antimicrobial, anti-inflammatory, analgesic, and antiproliferative properties on these plants. These unconventional plants can be exploited by the food industry as food and supplements and therapeutic plants to develop valuable products for food, cosmetics, pharmaceutical, and medical applications.
Collapse
Affiliation(s)
- Clara Prestes Ferreira
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), 66075-110 Belém, PA, Brazil
| | - Matheus da Costa de Lima
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), 66075-110 Belém, PA, Brazil
| | - Juliana Guimarães da Silva
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), 66075-110 Belém, PA, Brazil
| | - Nayara Macêdo Peixoto Araujo
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), 66075-110 Belém, PA, Brazil.
| |
Collapse
|
3
|
Mejía-Méndez JL, Sánchez-Ante G, Minutti-Calva Y, Schürenkämper-Carrillo K, Navarro-López DE, Buendía-Corona RE, González-Chávez MDCÁ, Sánchez-López AL, Lozada-Ramírez JD, Sánchez-Arreola E, López-Mena ER. Kalanchoe tomentosa: Phytochemical Profiling, and Evaluation of Its Biological Activities In Vitro, In Vivo, and In Silico. Pharmaceuticals (Basel) 2024; 17:1051. [PMID: 39204156 PMCID: PMC11357309 DOI: 10.3390/ph17081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
In this work, the leaves of K. tomentosa were macerated with hexane, chloroform, and methanol, respectively. The phytochemical profiles of hexane and chloroform extracts were unveiled using GC/MS, whereas the chemical composition of the methanol extract was analyzed using UPLC/MS/MS. The antibacterial activity of extracts was determined against gram-positive and gram-negative strains through the minimal inhibitory concentration assay, and in silico studies were implemented to analyze the interaction of phytoconstituents with bacterial peptides. The antioxidant property of extracts was assessed by evaluating their capacity to scavenge DPPH, ABTS, and H2O2 radicals. The toxicity of the extracts was recorded against Artemia salina nauplii and Caenorhabditis elegans nematodes. Results demonstrate that the hexane and chloroform extracts contain phytosterols, triterpenes, and fatty acids, whereas the methanol extract possesses glycosidic derivatives of quercetin and kaempferol together with sesquiterpene lactones. The antibacterial performance of extracts against the cultured strains was appraised as weak due to their MIC90 values (>500 μg/mL). As antioxidants, treatment with extracts executed high and moderate antioxidant activities within the range of 50-300 μg/mL. Extracts did not decrease the viability of A. salina, but they exerted a high toxic effect against C. elegans during exposure to treatment. Through in silico modeling, it was recorded that the flavonoids contained in the methanol extract can hamper the interaction of the NAM/NAG peptide, which is of great interest since it determines the formation of the peptide wall of gram-positive bacteria. This study reports for the first time the biological activities and phytochemical content of extracts from K. tomentosa and proposes a possible antibacterial mechanism of glycosidic derivatives of flavonoids against gram-positive bacteria.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Programa de Edafología, Colegio de Postgraduados, Campus Montecillo, Carr. México Texcoco km 36.4, Montecillo 56230, Mexico; (J.L.M.-M.); (M.d.C.Á.G.-C.)
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico; (Y.M.-C.); (K.S.-C.); (R.E.B.-C.)
| | - Gildardo Sánchez-Ante
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.); (A.L.S.-L.)
| | - Yulianna Minutti-Calva
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico; (Y.M.-C.); (K.S.-C.); (R.E.B.-C.)
| | - Karen Schürenkämper-Carrillo
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico; (Y.M.-C.); (K.S.-C.); (R.E.B.-C.)
| | - Diego E. Navarro-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.); (A.L.S.-L.)
| | - Ricardo E. Buendía-Corona
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico; (Y.M.-C.); (K.S.-C.); (R.E.B.-C.)
| | - Ma. del Carmen Ángeles González-Chávez
- Programa de Edafología, Colegio de Postgraduados, Campus Montecillo, Carr. México Texcoco km 36.4, Montecillo 56230, Mexico; (J.L.M.-M.); (M.d.C.Á.G.-C.)
| | - Angélica Lizeth Sánchez-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.); (A.L.S.-L.)
| | - J. Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico; (Y.M.-C.); (K.S.-C.); (R.E.B.-C.)
| | - Eugenio Sánchez-Arreola
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico; (Y.M.-C.); (K.S.-C.); (R.E.B.-C.)
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.); (A.L.S.-L.)
| |
Collapse
|
4
|
Mejía-Méndez JL, Sánchez-Ante G, Cerro-López M, Minutti-Calva Y, Navarro-López DE, Lozada-Ramírez JD, Bach H, López-Mena ER, Sánchez-Arreola E. Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe fedtschenkoi: Characterization and Bioactivities. Biomolecules 2024; 14:782. [PMID: 39062496 PMCID: PMC11274660 DOI: 10.3390/biom14070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, the hexane, chloroform, and methanol extracts from Kalanchoe fedtschenkoi were utilized to green-synthesize silver nanoparticles (Kf1-, Kf2-, and Kf3-AgNPs). The Kf1-, Kf2-, and Kf3-AgNPs were characterized by spectroscopy and microscopy techniques. The antibacterial activity of AgNPs was studied against bacteria strains, utilizing the microdilution assay. The DPPH and H2O2 assays were considered to assess the antioxidant activity of AgNPs. The results revealed that Kf1-, Kf2-, and Kf3-AgNPs exhibit an average diameter of 39.9, 111, and 42 nm, respectively. The calculated ζ-potential of Kf1-, Kf2-, and Kf3-AgNPs were -20.5, -10.6, and -7.9 mV, respectively. The UV-vis analysis of the three samples demonstrated characteristic absorption bands within the range of 350-450 nm, which confirmed the formation of AgNPs. The FTIR analysis of AgNPs exhibited a series of bands from 3500 to 750 cm-1, related to the presence of extracts on their surfaces. SEM observations unveiled that Kf1- and Kf2-AgNPs adopted structural arrangements related to nano-popcorns and nanoflowers, whereas Kf3-AgNPs were spherical in shape. It was determined that treatment with Kf1-, Kf2-, and Kf3-AgNPs was demonstrated to inhibit the growth of E. coli, S. aureus, and P. aeruginosa in a dose-dependent manner (50-300 μg/mL). Within the same range, treatment with Kf1-, Kf2-, and Kf3-AgNPs decreased the generation of DPPH (IC50 57.02-2.09 μg/mL) and H2O2 (IC50 3.15-3.45 μg/mL) radicals. This study highlights the importance of using inorganic nanomaterials to improve the biological performance of plant extracts as an efficient nanotechnological approach.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| | - Gildardo Sánchez-Ante
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.)
| | - Mónica Cerro-López
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| | - Yulianna Minutti-Calva
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| | - Diego E. Navarro-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.)
| | - J. Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.)
| | - Eugenio Sánchez-Arreola
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| |
Collapse
|
5
|
Kciuk M, Garg N, Dhankhar S, Saini M, Mujwar S, Devi S, Chauhan S, Singh TG, Singh R, Marciniak B, Gielecińska A, Kontek R. Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin. Pharmaceuticals (Basel) 2024; 17:701. [PMID: 38931368 PMCID: PMC11206995 DOI: 10.3390/ph17060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, and others) and cancer, seemingly disparate in their etiology and manifestation, exhibit intriguing associations in certain cellular and molecular processes. Both cancer and neurodegenerative diseases involve the deregulation of cellular processes such as apoptosis, proliferation, and DNA repair and pose a significant global health challenge. Afzelin (kaempferol 3-O-rhamnoside) is a flavonoid compound abundant in various plant sources. Afzelin exhibits a diverse range of biological activities, offering promising prospects for the treatment of diseases hallmarked by oxidative stress and deregulation of cell death pathways. Its protective potential against oxidative stress is also promising for alleviating the side effects of chemotherapy. This review explores the potential therapeutic implications of afzelin, including its capacity to mitigate oxidative stress, modulate inflammation, and promote cellular regeneration in neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala 133207, Haryana, India;
- Swami Vivekanand College of Pharmacy, Ramnagar, Banur 140601, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, Punjab, India;
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| |
Collapse
|
6
|
Mejía-Méndez JL, Navarro-López DE, Sanchez-Martinez A, Ceballos-Sanchez O, Garcia-Amezquita LE, Tiwari N, Juarez-Moreno K, Sanchez-Ante G, López-Mena ER. Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants (Basel) 2024; 13:213. [PMID: 38397812 PMCID: PMC10886043 DOI: 10.3390/antiox13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards Artemia salina nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559-42.546% and 18.230-38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC50 values ranging from 3.898 to 126.948 μg/mL. Against A. salina nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R2 = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratory of Phytochemistry Research, Chemical Biological Sciences Department, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| | - Diego E. Navarro-López
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Araceli Sanchez-Martinez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Oscar Ceballos-Sanchez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Luis Eduardo Garcia-Amezquita
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada No 2501, Monterrey 64849, Mexico;
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Edgar R. López-Mena
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| |
Collapse
|
7
|
Singh SK, Shrivastava S, Mishra AK, Kumar D, Pandey VK, Srivastava P, Pradhan B, Behera BC, Bahuguna A, Baek KH. Friedelin: Structure, Biosynthesis, Extraction, and Its Potential Health Impact. Molecules 2023; 28:7760. [PMID: 38067489 PMCID: PMC10707989 DOI: 10.3390/molecules28237760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Pharmaceutical companies are investigating more source matrices for natural bioactive chemicals. Friedelin (friedelan-3-one) is a pentacyclic triterpene isolated from various plant species from different families as well as mosses and lichen. The fundamental compounds of these friedelane triterpenoids are abundantly found in cork tissues and leaf materials of diverse plant genera such as Celastraceae, Asteraceae, Fabaceae, and Myrtaceae. They possess many pharmacological effects, including anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. Friedelin also has an anti-insect effect and the ability to alter the soil microbial ecology, making it vital to agriculture. Ultrasound, microwave, supercritical fluid, ionic liquid, and acid hydrolysis extract friedelin with reduced environmental impact. Recently, the high demand for friedelin has led to the development of CRISPR/Cas9 technology and gene overexpression plasmids to produce friedelin using genetically engineered yeast. Friedelin with low cytotoxicity to normal cells can be the best phytochemical for the drug of choice. The review summarizes the structural interpretation, biosynthesis, physicochemical properties, quantification, and various forms of pharmacological significance.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Biotechnology, ARKA Jain University, Jamshedpur 832108, Jharkhand, India; (S.K.S.); (P.S.)
| | - Shweta Shrivastava
- School of Pharmacy, ARKA Jain University, Jamshedpur 832108, Jharkhand, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Darshan Kumar
- Department of Biotechnology, ARKA Jain University, Jamshedpur 832108, Jharkhand, India; (S.K.S.); (P.S.)
| | - Vijay Kant Pandey
- Department of Agriculture, Netaji Subhas University, Jamshedpur 831012, Jharkhand, India;
| | - Pratima Srivastava
- Department of Biotechnology, ARKA Jain University, Jamshedpur 832108, Jharkhand, India; (S.K.S.); (P.S.)
| | - Biswaranjan Pradhan
- S.K. Dash Centre of Excellence of Biosciences and Engineering and Technology, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India;
| | - Bikash Chandra Behera
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, Odisha, India;
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Scheau AE, Savulescu-Fiedler I, Caruntu A, Badarau IA, Caruntu C, Scheau C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int J Mol Sci 2023; 24:16299. [PMID: 38003488 PMCID: PMC10671393 DOI: 10.3390/ijms242216299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Kaempferol and its derivatives are flavonoids found in various plants, and a considerable number of these have been used in various medical applications worldwide. Kaempferol and its compounds have well-known antioxidant, anti-inflammatory and antimicrobial properties among other health benefits. However, the antiviral properties of kaempferol are notable, and there is a significant number of experimental studies on this topic. Kaempferol compounds were effective against DNA viruses such as hepatitis B virus, viruses of the alphaherpesvirinae family, African swine fever virus, and pseudorabies virus; they were also effective against RNA viruses, namely feline SARS coronavirus, dengue fever virus, Japanese encephalitis virus, influenza virus, enterovirus 71, poliovirus, respiratory syncytial virus, human immunodeficiency virus, calicivirus, and chikungunya virus. On the other hand, no effectiveness against murine norovirus and hepatitis A virus could be determined. The antiviral action mechanisms of kaempferol compounds are various, such as the inhibition of viral polymerases and of viral attachment and entry into host cells. Future research should be focused on further elucidating the antiviral properties of kaempferol compounds from different plants and assessing their potential use to complement the action of antiviral drugs.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|