1
|
Aghaali Z, Naghavi MR. Developing benzylisoquinoline alkaloid-enriched opium poppy via CRISPR-directed genome editing: A review. BMC PLANT BIOLOGY 2024; 24:700. [PMID: 39048937 PMCID: PMC11267691 DOI: 10.1186/s12870-024-05412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Among plant-derived secondary metabolites are benzylisoquinoline alkaloids (BIAs) that play a vital role in medicine. The most conspicuous BIAs frequently found in opium poppy are morphine, codeine, thebaine, papaverine, sanguinarine, and noscapine. BIAs have provided abundant clinically useful drugs used in the treatment of various diseases and ailments With an increasing demand for these herbal remedies, genetic improvement of poppy plants appears to be essential to live up to the expectations of the pharmaceutical industry. With the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9), the field of metabolic engineering has undergone a paradigm shift in its approach due to its appealing attributes, such as the transgene-free editing capability, precision, selectivity, robustness, and versatility. The potentiality of the CRISPR system for manipulating metabolic pathways in opium poppy was demonstrated, but further investigations regarding the use of CRISPR in BIA pathway engineering should be undertaken to develop opium poppy into a bioreactor synthesizing BIAs at the industrial-scale levels. In this regard, the recruitment of RNA-guided genome editing for knocking out miRNAs, flower responsible genes, genes involved in competitive pathways, and base editing are described. The approaches presented here have never been suggested or applied in opium poppy so far.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Naghavi
- Division of Plant Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
2
|
Ashraf H, Ghouri F, Baloch FS, Nadeem MA, Fu X, Shahid MQ. Hybrid Rice Production: A Worldwide Review of Floral Traits and Breeding Technology, with Special Emphasis on China. PLANTS (BASEL, SWITZERLAND) 2024; 13:578. [PMID: 38475425 DOI: 10.3390/plants13050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
Rice is an important diet source for the majority of the world's population, and meeting the growing need for rice requires significant improvements at the production level. Hybrid rice production has been a significant breakthrough in this regard, and the floral traits play a major role in the development of hybrid rice. In grass species, rice has structural units called florets and spikelets and contains different floret organs such as lemma, palea, style length, anther, and stigma exsertion. These floral organs are crucial in enhancing rice production and uplifting rice cultivation at a broader level. Recent advances in breeding techniques also provide knowledge about different floral organs and how they can be improved by using biotechnological techniques for better production of rice. The rice flower holds immense significance and is the primary focal point for researchers working on rice molecular biology. Furthermore, the unique genetics of rice play a significant role in maintaining its floral structure. However, to improve rice varieties further, we need to identify the genomic regions through mapping of QTLs (quantitative trait loci) or by using GWAS (genome-wide association studies) and their validation should be performed by developing user-friendly molecular markers, such as Kompetitive allele-specific PCR (KASP). This review outlines the role of different floral traits and the benefits of using modern biotechnological approaches to improve hybrid rice production. It focuses on how floral traits are interrelated and their possible contribution to hybrid rice production to satisfy future rice demand. We discuss the significance of different floral traits, techniques, and breeding approaches in hybrid rice production. We provide a historical perspective of hybrid rice production and its current status and outline the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Mersin 33100, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|