1
|
Bouqellah NA, Elkady NA, Farag PF. Secretome Analysis for a New Strain of the Blackleg Fungus Plenodomus lingam Reveals Candidate Proteins for Effectors and Virulence Factors. J Fungi (Basel) 2023; 9:740. [PMID: 37504729 PMCID: PMC10381368 DOI: 10.3390/jof9070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The fungal secretome is the main interface for interactions between the pathogen and its host. It includes the most important virulence factors and effector proteins. We integrated different bioinformatic approaches and used the newly drafted genome data of P. lingam isolate CAN1 (blackleg of rapeseed fungus) to predict the secretion of 217 proteins, including many cell-wall-degrading enzymes. All secretory proteins were identified; 85 were classified as CAZyme families and 25 were classified as protease families. Moreover, 49 putative effectors were predicted and identified, where 39 of them possessed at least one conserved domain. Some pectin-degrading enzymes were noticeable as a clustering group according to STRING web analysis. The secretome of P. lingam CAN1 was compared to the other two blackleg fungal species (P. lingam JN3 and P. biglobosus CA1) secretomes and their CAZymes and effectors were identified. Orthologue analysis found that P. lingam CAN1 shared 14 CAZy effectors with other related species. The Pathogen-Host Interaction database (PHI base) classified the effector proteins in several categories where most proteins were assigned as reduced virulence and two of them termed as hypervirulence. Nowadays, in silico approaches can solve many ambiguous issues about the mechanism of pathogenicity between fungi and plant host with well-designed bioinformatics tools.
Collapse
Affiliation(s)
- Nahla A Bouqellah
- Department of Biology, College of Science, Taibah University, P.O. Box 344, Al Madinah Al Munawwarah 42317-8599, Saudi Arabia
| | - Nadia A Elkady
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Peter F Farag
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
2
|
Mourou M, Raimondo ML, Lops F, Carlucci A. Brassicaceae Fungi and Chromista Diseases: Molecular Detection and Host–Plant Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:1033. [PMID: 36903895 PMCID: PMC10005080 DOI: 10.3390/plants12051033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Brassicaceae plants cover a large number of species with great economic and nutritional importance around the world. The production of Brassica spp. is limited due to phytopathogenic fungal species causing enormous yield losses. In this scenario, precise and rapid detection and identification of plant-infecting fungi are essential to facilitate the effective management of diseases. DNA-based molecular methods have become popular methods for accurate plant disease diagnostics and have been used to detect Brassicaceae fungal pathogens. Polymerase chain reaction (PCR) assays including nested, multiplex, quantitative post, and isothermal amplification methods represent a powerful weapon for early detection of fungal pathogens and preventively counteract diseases on brassicas with the aim to drastically reduce the fungicides as inputs. It is noteworthy also that Brassicaceae plants can establish a wide variety of relationships with fungi, ranging from harmful interactions with pathogens to beneficial associations with endophytic fungi. Thus, understanding host and pathogen interaction in brassica crops prompts better disease management. The present review reports the main fungal diseases of Brassicaceae, molecular methods used for their detection, review studies on the interaction between fungi and brassicas plants, and the various mechanisms involved including the application of omics technologies.
Collapse
Affiliation(s)
- Marwa Mourou
- Department of Agricultural Sciences, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | | | | | - Antonia Carlucci
- Department of Agricultural Sciences, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
3
|
Alnajar D, von Tiedemann A, Koopmann B. Efficacy of Blackleg Major Resistance Genes in B. napus in Germany. Pathogens 2022; 11:461. [PMID: 35456136 PMCID: PMC9030727 DOI: 10.3390/pathogens11040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Leptosphaeria maculans is one of the major pathogens of oilseed rape (B. napus). It causes blackleg disease, which accounts for significant yield losses worldwide. Using cultivars that harbor major resistance (R) genes is one of the most effective control methods. However, the efficacy of major R genes is related to the frequency of the corresponding avirulence (Avr) genes in a L. maculans population. In this paper, we report the Avr profiles of L. maculans populations and the ratio of its mating types in Northern and Central regions of Germany. Eleven Avr genes in five-hundred and seventy-four isolates were characterized either by applying cotyledon tests on a B. napus differential set or by amplifying avirulence gene-specific PCR markers. Fifty-two races were determined, among which the most dominant race was Avrlm6, -7, -11, AvrlepR1, -R2. Results showed that the resistance gene Rlm2 is 100% ineffective, some other major R genes such as Rlm1, Rlm3, Rlm4 and LepR3 are partially effective (with corresponding Avr frequencies ≤ 42%), while LepR1, LepR2, Rlm6, Rlm11 and Rlm7 can still provide relatively effective resistance in the German fields investigated (with corresponding Avr frequencies of 63-100%). Sexual reproduction is a factor that enhances the potential of L. maculans to evolve under selection pressure. Mating types of the L. maculans populations did not deviate from the ratio of 1:1 in the examined regions, indicating that sexual reproduction and ascospores play central roles in the L. maculans lifecycle. Overall, this study provides an important dataset for the establishment of a strategic plan to preserve the efficacies of major R genes in Germany by applying cultivar rotations of oilseed rape.
Collapse
Affiliation(s)
- Dima Alnajar
- Plant Pathology and Crop Protection, University of Goettingen, 37077 Goettingen, Germany; (A.v.T.); (B.K.)
| | | | | |
Collapse
|
4
|
Amas J, Anderson R, Edwards D, Cowling W, Batley J. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3123-3145. [PMID: 34104999 PMCID: PMC8440254 DOI: 10.1007/s00122-021-03877-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/29/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Quantitative resistance (QR) loci discovered through genetic and genomic analyses are abundant in the Brassica napus genome, providing an opportunity for their utilization in enhancing blackleg resistance. Quantitative resistance (QR) has long been utilized to manage blackleg in Brassica napus (canola, oilseed rape), even before major resistance genes (R-genes) were extensively explored in breeding programmes. In contrast to R-gene-mediated qualitative resistance, QR reduces blackleg symptoms rather than completely eliminating the disease. As a polygenic trait, QR is controlled by numerous genes with modest effects, which exerts less pressure on the pathogen to evolve; hence, its effectiveness is more durable compared to R-gene-mediated resistance. Furthermore, combining QR with major R-genes has been shown to enhance resistance against diseases in important crops, including oilseed rape. For these reasons, there has been a renewed interest among breeders in utilizing QR in crop improvement. However, the mechanisms governing QR are largely unknown, limiting its deployment. Advances in genomics are facilitating the dissection of the genetic and molecular underpinnings of QR, resulting in the discovery of several loci and genes that can be potentially deployed to enhance blackleg resistance. Here, we summarize the efforts undertaken to identify blackleg QR loci in oilseed rape using linkage and association analysis. We update the knowledge on the possible mechanisms governing QR and the advances in searching for the underlying genes. Lastly, we lay out strategies to accelerate the genetic improvement of blackleg QR in oilseed rape using improved phenotyping approaches and genomic prediction tools.
Collapse
Affiliation(s)
- Junrey Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Robyn Anderson
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Wallace Cowling
- School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| |
Collapse
|
5
|
Chai L, Zhang J, Fernando WGD, Li H, Huang X, Cui C, Jiang J, Zheng B, Liu Y, Jiang L. Detection of Blackleg Resistance Gene Rlm1 in Double-Low Rapeseed Accessions from Sichuan Province, by Kompetitive Allele-Specific PCR. THE PLANT PATHOLOGY JOURNAL 2021; 37:194-199. [PMID: 33866761 PMCID: PMC8053842 DOI: 10.5423/ppj.oa.10.2020.0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/01/2021] [Indexed: 05/04/2023]
Abstract
Blackleg is a serious disease in Brassica plants, causing moderate to severe yield losses in rapeseed worldwide. Although China has not suffered from this disease yet (more aggressive Leptosphaeria maculans is not present yet), it is crucial to take provisions in breeding for disease resistance to have excellent blackleg-resistant cultivars already in the fields or in the breeding pipeline. The most efficient strategy for controlling this disease is breeding plants with identified resistance genes. We selected 135 rapeseed accessions in Sichuan, including 30 parental materials and 105 hybrids, and we determined their glucosinolate and erucic acid content and confirmed 17 double-low materials. A recently developed single-nucleotide polymorphism (SNP) marker, SNP_208, was used to genotype allelic Rlm1/rlm1 on chromosome A07, and 87 AvrLm1-resistant materials. Combined with the above-mentioned seed quality data, we identified 11 AvrLm1-resistant double-low rapeseed accessions, including nine parental materials and two hybrids. This study lays the foundation of specific R gene-oriented breeding, in the case that the aggressive Leptosphaeria maculans invades and establishes in China in the future and a robust and less labor consuming method to identify resistance in canola germplasm.
Collapse
Affiliation(s)
- Liang Chai
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Jinfang Zhang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Wannakuwattewaduge Gerard Dilantha Fernando
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Co-corresponding authors: L. Jiang, Tel) +86-28-84504235, E-mail) . W. G. Dilantha Fernando, Tel) 204-474-8577, E-mail)
| | - Haojie Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Xiaoqin Huang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Jun Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Benchuan Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Liangcai Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
- Co-corresponding authors: L. Jiang, Tel) +86-28-84504235, E-mail) . W. G. Dilantha Fernando, Tel) 204-474-8577, E-mail)
| |
Collapse
|
6
|
Zou Z, Liu F, Selin C, Fernando WGD. Generation and Characterization of a Virulent Leptosphaeria maculans Isolate Carrying a Mutated AvrLm7 Gene Using the CRISPR/Cas9 System. Front Microbiol 2020; 11:1969. [PMID: 32849487 PMCID: PMC7432424 DOI: 10.3389/fmicb.2020.01969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
Blackleg, caused by the fungal pathogen Leptosphaeria maculans, is the most important disease affecting canola (Brassica napus) crops worldwide. We employed the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to generate the mutant isolate umavr7 from a point mutation of the AvrLm7 coding region in a L. maculans isolate (UMAvr7). Reverse transcription PCR and transcriptome data confirmed that the AvrLm7 gene was knocked out in the mutant isolate. Pathogenicity tests indicated that umavr7 can cause large lesions on a set of Brassica differential genotypes that express different resistance (R) genes. Comparative pathogenicity tests between UMAvr7 (wild type) and umavr7 on the corresponding B. napus genotype 01-23-2-1 (with Rlm7) showed that umavr7 is a mutant isolate, producing large gray/green lesions on cotyledons. The pathogenicity of the mutant isolate was shifted from avirulent to virulent on the B. napus Rlm7 genotype. Therefore, this mutant is virulence on the identified resistant genes to blackleg disease in B. napus genotypes. Superoxide accumulated differently in cotyledons in response to infection with UMAvr7 and umavr7, especially in resistant B. napus genotype 01-23-2-1. Resistance/susceptibility was further evaluated on 123 B. napus genotypes with the mutant isolate, umavr7. Only 6 of the 123 genotypes showed resistance to umavr7. The identification of these six resistant B. napus genotypes will lead to further studies on the development of blackleg disease resistance through breeding and the identification of novel R genes.
Collapse
Affiliation(s)
- Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Carrie Selin
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
7
|
Fu F, Zhang X, Liu F, Peng G, Yu F, Fernando D. Identification of resistance loci in Chinese and Canadian canola/rapeseed varieties against Leptosphaeria maculans based on genome-wide association studies. BMC Genomics 2020; 21:501. [PMID: 32693834 PMCID: PMC7372758 DOI: 10.1186/s12864-020-06893-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
Background The fungal pathogen Leptosphaeria maculans (Lm). causes blackleg disease on canola/rapeseed in many parts of the world. It is important to use resistant cultivars to manage the disease and minimize yield losses. In this study, twenty-two Lm isolates were used to identify resistance genes in a collection of 243 canola/rapeseed (Brassica napus L.) accessions from Canada and China. These Lm isolates carry different compliments of avirulence genes, and the investigation was based on a genome-wide association study (GWAS) and genotype-by-sequencing (GBS). Results Using the CROP-SNP pipeline, a total of 81,471 variants, including 78,632 SNPs and 2839 InDels, were identified. The GWAS was performed using TASSEL 5.0 with GLM + Q model. Thirty-two and 13 SNPs were identified from the Canadian and Chinese accessions, respectively, tightly associated with blackleg resistance with P values < 1 × 10− 4. These SNP loci were distributed on chromosomes A03, A05, A08, A09, C01, C04, C05, and C07, with the majority of them on A08 followed by A09 and A03. The significant SNPs identified on A08 were all located in a 2010-kb region and associated with resistance to 12 of the 22 Lm isolates. Furthermore, 25 resistance gene analogues (RGAs) were identified in these regions, including two nucleotide binding site (NBS) domain proteins, fourteen RLKs, three RLPs and six TM-CCs. These RGAs can be the potential candidate genes for blackleg resistance. Conclusion This study provides insights into potentially new genomic regions for discovery of additional blackleg resistance genes. The identified regions associated with blackleg resistance in the germplasm collection may also contribute directly to the development of canola varieties with novel resistance genes against blackleg of canola.
Collapse
Affiliation(s)
- Fuyou Fu
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Xuehua Zhang
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Gary Peng
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada.
| | - Dilantha Fernando
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Díaz-Cruz GA, Smith CM, Wiebe KF, Villanueva SM, Klonowski AR, Cassone BJ. Applications of Next-Generation Sequencing for Large-Scale Pathogen Diagnoses in Soybean. PLANT DISEASE 2019; 103:1075-1083. [PMID: 31009362 DOI: 10.1094/pdis-05-18-0905-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Soybean (Glycine max) has become an important crop in Manitoba, Canada, with a 10-fold increase in dedicated acreage over the past decade. Given the rapid increase in production, scarce information about foliar diseases present in the province has been recorded. In order to describe the foliar pathogens affecting this legume, we harnessed next-generation sequencing (NGS) to carry out a comprehensive survey across Manitoba in 2016. Fields were sampled during the V2/3 (33 fields) and R6 (70 fields) growth stages, with at least three symptomatic leaves per field collected and subjected to RNA sequencing. We successfully detected several bacteria, fungi, and viruses known to infect soybean, including Pseudomonas savastanoi pv. glycinea, Septoria glycines, and Peronospora manshurica, as well as pathogens not previously identified in the province (e.g., Pseudomonas syringae pv. tabaci, Cercospora sojina, and Bean yellow mosaic virus). For some microorganisms, we were able to disentangle the different pathovars present and/or assemble their genome sequence. Since NGS generates data on the entire flora and fauna occupying a leaf sample, we also identified residual pathogens (i.e., pathogens of crops other than soybean) and multiple species of arthropod pests. Finally, the sequence information produced by NGS allowed for the development of polymerase chain reaction-based diagnostics for some of the most widespread and important pathogens. Although there are many benefits of using NGS for large-scale plant pathogen diagnoses, we also discuss some of the limitations of this technology.
Collapse
Affiliation(s)
- Gustavo A Díaz-Cruz
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Charlotte M Smith
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Kiana F Wiebe
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Sachi M Villanueva
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Adam R Klonowski
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Bryan J Cassone
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| |
Collapse
|