1
|
Apio HB, Elegba W, Nunekpeku W, Otu SA, Baguma JK, Alicai T, Danso KE, Bimpong IK, Ogwok E. Effect of gamma irradiation on proliferation and growth of friable embryogenic callus and in vitro nodal cuttings of ugandan cassava genotypes. FRONTIERS IN PLANT SCIENCE 2024; 15:1414128. [PMID: 39351022 PMCID: PMC11439714 DOI: 10.3389/fpls.2024.1414128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Cassava (Manihot esculenta Crantz) production and productivity in Africa is affected by two viral diseases; cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Induced mutagenesis of totipotent/embryogenic tissues or in vitro plant material can lead to the generation of CMD and/or CBSD tolerant mutants. To massively produce non-chimeric plants timely and with less labor, totipotent cells or tissues are a pre-requisite. This study aimed to determine the effect of gamma radiation on the proliferation and growth of friable embryogenic callus (FEC) and in vitro nodal cuttings respectively. To obtain FEC, 2-6 mm sized leaf lobes of nine cassava genotypes were plated on Murashige and Skoog (MS) basal media supplemented with varying levels (37, 50, 70, 100) μM of picloram for production of organized embryogenic structures (OES). The OES of five cassava genotypes (Alado, CV-60444, NASE 3, NASE 13 and TME 204) were crushed and plated in Gresshoff and Doy (GD) basal media in combination with the amino acid tyrosine in varying concentrations for FEC production. FEC from five cassava genotypes and in vitro nodal cuttings of nine genotypes were irradiated using five different gamma doses (0, 5, 10, 15, 20 and 25 Gy) at a dose rate of 81Gy/hr. The lethal dose (LD)50 was determined using the number of roots produced and flow cytometry was done to determine the ploidy status of plants. The highest production of OES was noted in Alado across varying picloram concentrations, while TME 204 obtained the highest amount of FEC. The irradiated FEC gradually died and by 28 days post irradiation, FEC from all five cassava genotypes were lost. Conversely, the irradiated in vitro nodal cuttings survived and some produced roots, while others produced callus. The LD50 based on number of roots varied from genotype to genotype, but plants remained diploid post-irradiation. Accordingly, the effect of gamma irradiation on Ugandan cassava genotypes (UCGs) was genotype-dependent. This information is foundational for the use of in vitro tissues as target material for cassava mutation breeding.
Collapse
Affiliation(s)
- Hellen B. Apio
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Wilfred Elegba
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Wonder Nunekpeku
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Solomon Ayeboafo Otu
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Julius Karubanga Baguma
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Titus Alicai
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Kenneth Ellis Danso
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
- School of Nuclear and Allied Sciences, University of Ghana, Accra, Ghana
| | - Isaac Kofi Bimpong
- Plant Breeding and Genetics Section, Joint Food and Agricultural Organisation (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Emmanuel Ogwok
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
- Department of Science and Vocational Education, Faculty of Science, Lira University, Lira, Uganda
| |
Collapse
|
2
|
Baguma JK, Mukasa SB, Nuwamanya E, Alicai T, Omongo CA, Ochwo-Ssemakula M, Ozimati A, Esuma W, Kanaabi M, Wembabazi E, Baguma Y, Kawuki RS. Identification of Genomic Regions for Traits Associated with Flowering in Cassava ( Manihot esculenta Crantz). PLANTS (BASEL, SWITZERLAND) 2024; 13:796. [PMID: 38592820 PMCID: PMC10974989 DOI: 10.3390/plants13060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/11/2024]
Abstract
Flowering in cassava (Manihot esculenta Crantz) is crucial for the generation of botanical seed for breeding. However, genotypes preferred by most farmers are erect and poor at flowering or never flower. To elucidate the genetic basis of flowering, 293 diverse cassava accessions were evaluated for flowering-associated traits at two locations and seasons in Uganda. Genotyping using the Diversity Array Technology Pty Ltd. (DArTseq) platform identified 24,040 single-nucleotide polymorphisms (SNPs) distributed on the 18 cassava chromosomes. Population structure analysis using principal components (PCs) and kinships showed three clusters; the first five PCs accounted for 49.2% of the observed genetic variation. Linkage disequilibrium (LD) estimation averaged 0.32 at a distance of ~2850 kb (kilo base pairs). Polymorphism information content (PIC) and minor allele frequency (MAF) were 0.25 and 0.23, respectively. A genome-wide association study (GWAS) analysis uncovered 53 significant marker-trait associations (MTAs) with flowering-associated traits involving 27 loci. Two loci, SNPs S5_29309724 and S15_11747301, were associated with all the traits. Using five of the 27 SNPs with a Phenotype_Variance_Explained (PVE) ≥ 5%, 44 candidate genes were identified in the peak SNP sites located within 50 kb upstream or downstream, with most associated with branching traits. Eight of the genes, orthologous to Arabidopsis and other plant species, had known functional annotations related to flowering, e.g., eukaryotic translation initiation factor and myb family transcription factor. This study identified genomic regions associated with flowering-associated traits in cassava, and the identified SNPs can be useful in marker-assisted selection to overcome hybridization challenges, like unsynchronized flowering, and candidate gene validation.
Collapse
Affiliation(s)
- Julius K. Baguma
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Settumba B. Mukasa
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Christopher Abu Omongo
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Mildred Ochwo-Ssemakula
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Alfred Ozimati
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- School of Biological Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Michael Kanaabi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Enoch Wembabazi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Yona Baguma
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Robert S. Kawuki
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| |
Collapse
|
3
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
4
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
5
|
Song GQ, Carter BB, Zhong GY. Multiple transcriptome comparisons reveal the essential roles of FLOWERING LOCUS T in floral initiation and SOC1 and SVP in floral activation in blueberry. Front Genet 2023; 14:1105519. [PMID: 37091803 PMCID: PMC10113452 DOI: 10.3389/fgene.2023.1105519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
The flowering mechanisms, especially chilling requirement-regulated flowering, in deciduous woody crops remain to be elucidated. Flower buds of northern highbush blueberry cultivar Aurora require approximately 1,000 chilling hours to bloom. Overexpression of a blueberry FLOWERING LOCUS T (VcFT) enabled precocious flowering of transgenic “Aurora” mainly in non-terminated apical buds during flower bud formation, meanwhile, most of the mature flower buds could not break until they received enough chilling hours. In this study, we highlighted two groups of differentially expressed genes (DEGs) in flower buds caused by VcFT overexpression (VcFT-OX) and full chilling. We compared the two groups of DEGs with a focus on flowering pathway genes. We found: 1) In non-chilled flower buds, VcFT-OX drove a high VcFT expression and repressed expression of a major MADS-box gene, blueberry SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (VcSOC1) resulting an increased VcFT/VcSOC1 expression ratio; 2) In fully chilled flower buds that are ready to break, the chilling upregulated VcSOC1 expression in non-transgenic “Aurora” and repressed VcFT expression in VcFT-OX “Aurora”, and each resulted in a decreased ratio of VcFT to VcSOC1; additionally, expression of a blueberry SHORT VEGETATIVE PHASE (VcSVP) was upregulated in chilled flower buds of both transgenic and non-transgenic’ “Aurora”. Together with additional analysis of VcFT and VcSOC1 in the transcriptome data of other genotypes and tissues, we provide evidence to support that VcFT expression plays a significant role in promoting floral initiation and that VcSOC1 expression is a key floral activator. We thus propose a new hypothesis on blueberry flowering mechanism, of which the ratios of VcFT-to-VcSOC1 at transcript levels in the flowering pathways determine flower bud formation and bud breaking. Generally, an increased VcFT/VcSOC1 ratio or increased VcSOC1 in leaf promotes precocious flowering and flower bud formation, and a decreased VcFT/VcSOC1 ratio with increased VcSOC1 in fully chilled flower buds contributes to flower bud breaking.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
- *Correspondence: Guo-qing Song,
| | - Benjamin B. Carter
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Gan-Yuan Zhong
- Grape Genetics Research Unit, USDA-Agricultural Research Service, Geneva, NY, United States
| |
Collapse
|
6
|
Hyde PT, Setter TL. Long-day photoperiod and cool temperature induce flowering in cassava: Expression of signaling genes. FRONTIERS IN PLANT SCIENCE 2022; 13:973206. [PMID: 36186068 PMCID: PMC9523484 DOI: 10.3389/fpls.2022.973206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/23/2022] [Indexed: 06/08/2023]
Abstract
Cassava is a staple food crop in the tropics, and is of particular importance in Africa. Recent development of genomic selection technology have improved the speed of cassava breeding; however, cassava flower initiation and development remains a bottleneck. The objectives of the current studies were to elucidate the effect of photoperiod, temperature and their interactions on the time of flowering and flower development in controlled environments, and to use RNA-sequencing to identify transcriptome expression underlying these environmental responses. Compared to a normal tropical day-length of 12 h, increasing the photoperiod by 4 h or decreasing the air temperature from 34/31 to 22°/19°C (day/night) substantially hastened the time to flowering. For both photoperiod and temperature, the environment most favorable for flowering was opposite the one for storage root harvest index. There was a pronounced treatment interaction: at warm day-time temperatures, percent flowering was low, and photoperiod had little effect. In contrast, at cooler temperatures, percent flowering increased, and long-day (LD) photoperiod had a strong effect in hastening flowering. In response to temperature, many differentially expressed genes in the sugar, phase-change, and flowering-time-integrator pathways had expression/flowering patterns in the same direction as in Arabidopsis (positive or negative) even though the effect of temperature on flowering operates in the reverse direction in cassava compared to Arabidopsis. Three trehalose-6-phosphate-synthase-1 (TPS1) genes and four members of the SPL gene family had significantly increased expression at cool temperature, suggesting sugar signaling roles in flower induction. In response to LD photoperiod, regulatory genes were expressed as in Arabidopsis and other LD flowering plants. Several hormone-related genes were expressed in response to both photoperiod and temperature. In summary, these findings provide insight on photoperiod and temperature responses and underlying gene expression that may assist breeding programs to manipulate flowering for more rapid crop improvement.
Collapse
|
7
|
Motoki K, Kinoshita Y, Nakano R, Hosokawa M, Nakazaki T. Quantitative Analysis of Florigen for the Variability of Floral Induction in Cabbage/Radish Inter-generic Grafting. PLANT & CELL PHYSIOLOGY 2022; 63:1230-1241. [PMID: 35792499 DOI: 10.1093/pcp/pcac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Grafting-induced flowering is a key phenomenon to understand systemic floral induction caused by florigen. It can also be used as a breeding technique enabling rapid seed production of crops with long generation times. However, the degree of floral induction in grafted plants is often variable. Moreover, it is difficult in some crop species. Here, we explored the factors promoting variability in the grafting-induced flowering of cabbage (Brassica oleracea L. var. capitata), an important vegetable crop with a long generation time, via the quantitative analysis of florigen accumulation. Significant variability in the flowering response of grafted cabbage was observed when rootstocks of different genotypes were used. As reported previously, B. oleracea rootstocks did not induce the flowering of grafted cabbage plants, but radish (Raphanus sativus L.) rootstocks unstably did, depending on the accessions used. Immunoblotting analysis of the FLOWERING LOCUS T (FT) protein, a main component of florigen, revealed that floral induction was quantitatively correlated with the level of accumulated FT protein in the grafted scion. To identify rootstock factors that cause variability in the floral induction of the grafted scion, we investigated FT protein accumulation and flowering response in grafted scions when the transcription levels of FT and the leaf area of rootstocks were altered by vernalization, daylength and leaf trimming treatments. We concluded that increasing the total amount of FT protein produced in the rootstock is important for the stable floral induction of the grafted cabbage, and this can be accomplished by increasing FT transcription and the leaf area of the rootstock.
Collapse
Affiliation(s)
- Ko Motoki
- Graduate School of Agriculture, Kyoto University, Kizugawa, Kyoto, 619-0218 Japan
| | - Yu Kinoshita
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502 Japan
| | - Ryohei Nakano
- Graduate School of Agriculture, Kyoto University, Kizugawa, Kyoto, 619-0218 Japan
| | - Munetaka Hosokawa
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505 Japan
- Agricultural Technology and Innovation Research Institute (ATIRI), Kindai University, Nara, Nara, 631-8505 Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, Kizugawa, Kyoto, 619-0218 Japan
| |
Collapse
|
8
|
Tokunaga H, Quynh DTN, Anh NH, Nhan PT, Matsui A, Takahashi S, Tanaka M, Anh NM, Van Dong N, Ham LH, Higo A, Hoa TM, Ishitani M, Minh NBN, Hy NH, Srean P, Thu VA, Tung NB, Vu NA, Yamaguchi K, Tsuji H, Utsumi Y, Seki M. Field transcriptome analysis reveals a molecular mechanism for cassava-flowering in a mountainous environment in Southeast Asia. PLANT MOLECULAR BIOLOGY 2022; 109:233-248. [PMID: 32902791 DOI: 10.1007/s11103-020-01057-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/17/2020] [Indexed: 05/12/2023]
Abstract
The field survey in this article showed in 'KU50', a popular variety and late-branching type of cassava in Southeast Asia, that flowering rarely occurs in normal-field conditions in Southeast Asia but is strongly induced in the dry season in the mountainous region. Flowering time is correlated with the expression patterns of MeFT1 and homologs of Arabidopsis GI, PHYA, and NF-Ys. Cassava (Manihot esculenta Crantz) is a tropical crop that is propagated vegetatively rather than sexually by seed. Flowering rarely occurs in the erect-type variety grown in Southeast Asia, but it is known that cassava produces flowers every year in mountainous regions. Data pertaining to the effect of environmental factors on flowering time and gene expression in cassava, however, is limited. The aim of the present study was to determine the kinds of environmental conditions that regulate flowering time in cassava and the underlying molecular mechanisms. The flowering status of KU50, a popular variety in Southeast Asia and late-branching type of cassava, was monitored in six fields in Vietnam and Cambodia. At non-flowering and flowering field locations in North Vietnam, the two FLOWERING LOCUS T (FT)-like genes, MeFT1 and MeFT2, were characterized by qPCR, and the pattern of expression of flowering-related genes and genes responsive to environmental signals were analyzed by using RNA sequencing data from time-series samples. Results indicate that cassava flowering was induced in the dry season in the mountain region, and that flowering time was correlated with the expression of MeFT1, and homologs of Arabidopsis GI, PHYA, and NF-Ys. Based upon these data, we hypothesize that floral induction in cassava is triggered by some conditions present in the mountain regions during the dry season.
Collapse
Affiliation(s)
- Hiroki Tokunaga
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan.
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.
| | - Do Thi Nhu Quynh
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Nguyen Hai Anh
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Pham Thi Nhan
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Akihiro Matsui
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan
| | | | - Maho Tanaka
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan
| | - Ngo Minh Anh
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- JICA Vietnam Office, Hanoi, Vietnam
| | - Nguyen Van Dong
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Le Huy Ham
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Asuka Higo
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Truong Minh Hoa
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Manabu Ishitani
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Nguyen Huu Hy
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Pao Srean
- University of Battambang (UBB), Battambang, Cambodia
| | - Vu Anh Thu
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Nguyen Ba Tung
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Nguyen Anh Vu
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Kaho Yamaguchi
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Yoshinori Utsumi
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan.
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan.
- Cluster for Pioneering Research, RIKEN, Saitama, Japan.
| |
Collapse
|
9
|
Fathima AA, Sanitha M, Tripathi L, Muiruri S. Cassava (
Manihot esculenta
) dual use for food and bioenergy: A review. Food Energy Secur 2022. [DOI: 10.1002/fes3.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Anwar Aliya Fathima
- Department of Bioinformatics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
| | - Mary Sanitha
- Department of Bioinformatics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| | - Samwel Muiruri
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
- Department of Plant Sciences Kenyatta University Nairobi Kenya
| |
Collapse
|
10
|
Wu YM, Ma YJ, Wang M, Zhou H, Gan ZM, Zeng RF, Ye LX, Zhou JJ, Zhang JZ, Hu CG. Mobility of FLOWERING LOCUS T protein as a systemic signal in trifoliate orange and its low accumulation in grafted juvenile scions. HORTICULTURE RESEARCH 2022; 9:uhac056. [PMID: 35702366 PMCID: PMC9186307 DOI: 10.1093/hr/uhac056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 05/29/2023]
Abstract
The long juvenile period of perennial woody plants is a major constraint in breeding programs. FLOWERING LOCUS T (FT) protein is an important mobile florigen signal that induces plant flowering. However, whether FT can be transported in woody plants to shorten the juvenile period is unknown, and its transport mechanism remains unclear. In this study, trifoliate orange FT (ToFT) and Arabidopsis FT (AtFT, which has been confirmed to be transportable in Arabidopsis) as a control were transformed into tomato and trifoliate orange, and early flowering was induced in the transgenic plants. Long-distance and two-way (upward and downward) transmission of ToFT and AtFT proteins was confirmed in both tomato and trifoliate orange using grafting and western blot analysis. However, rootstocks of transgenic trifoliate orange could not induce flowering in grafted wild-type juvenile scions because of the low accumulation of total FT protein in the grafted scions. It was further confirmed that endogenous ToFT protein was reduced in trifoliate orange, and the accumulation of the transported ToFT and AtFT proteins was lower than that in grafted juvenile tomato scions. Furthermore, the trifoliate orange FT-INTERACTING PROTEIN1 homolog (ToFTIP1) was isolated by yeast two-hybrid analysis. The FTIP1 homolog may regulate FT transport by interacting with FT in tomato and trifoliate orange. Our findings suggest that FT transport may be conserved between the tomato model and woody plants. However, in woody plants, the transported FT protein did not accumulate in significant amounts in the grafted wild-type juvenile scions and induce the scions to flower.
Collapse
|
11
|
Tang M, Bai X, Wang J, Chen T, Meng X, Deng H, Li C, Xu ZF. Efficiency of graft-transmitted JcFT for floral induction in woody perennial species of the Jatropha genus depends on transport distance. TREE PHYSIOLOGY 2022; 42:189-201. [PMID: 34505154 PMCID: PMC8755054 DOI: 10.1093/treephys/tpab116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/24/2021] [Indexed: 06/01/2023]
Abstract
FLOWERING LOCUS T (FT) promotes flowering by integrating six genetic pathways. In Arabidopsis, the FT protein is transported from leaves to shoot apices and induces flowering. However, contradictory conclusions about floral induction via graft-transmitted FT in trees were reported in previous studies. We obtained extremely early-flowering transgenic woody Jatropha curcas L. by overexpression of J. curcas FT using Arabidopsis thaliana SUCROSE TRANSPORTER 2 (SUC2) promoter (SUC2:JcFT) and non-flowering transgenic J. curcas by RNA interference (RNAi), which were used to investigate the function of graft-transmitted JcFT in floral induction in woody perennials. Scions from five wild-type species of the Jatropha genus and from JcFT-RNAi transgenic J. curcas were grafted onto SUC2:JcFT rootstocks. Most grafted plants produced flowers in 1-2 months, and the flowering percentage and frequency of various grafted plants decreased with increasing scion length. Consistently, FT protein abundance in scions also decreased with increasing distance from graft junctions to the buds. These findings suggest that FT proteins can be transmitted by grafting and can induce the floral transition in woody perennials, and the efficiency of graft-transmitted JcFT for floral induction depends on the scion length, which may help explain previous seemingly contradictory observations regarding floral induction via graft-transmitted FT in trees.
Collapse
Affiliation(s)
| | | | - Jingxian Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Tao Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Meng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Hongjun Deng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Wenchang Street, Zhoukou, Henan 466001, China
| | - Zeng-Fu Xu
- Corresponding authors: M. Tang (), Z.-F. Xu ()
| |
Collapse
|
12
|
Uke A, Tokunaga H, Utsumi Y, Vu NA, Nhan PT, Srean P, Hy NH, Ham LH, Lopez-Lavalle LAB, Ishitani M, Hung N, Tuan LN, Van Hong N, Huy NQ, Hoat TX, Takasu K, Seki M, Ugaki M. Cassava mosaic disease and its management in Southeast Asia. PLANT MOLECULAR BIOLOGY 2022; 109:301-311. [PMID: 34240309 PMCID: PMC9162994 DOI: 10.1007/s11103-021-01168-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/21/2021] [Indexed: 05/09/2023]
Abstract
Key message Status of the current outbreak of cassava mosaic disease (CMD) in Southeast Asia was reviewed. Healthy cassava seed production and dissemination systems have been established in Vietnam and Cambodia, along with integrated disease and pest management systems, to combat the outbreak. Abstract Cassava (Manihot esculenta Crantz) is one of the most important edible crops in tropical and subtropical regions. Recently, invasive insect pests and diseases have resulted in serious losses to cassava in Southeast Asia. In this review we discuss the current outbreak of cassava mosaic disease (CMD) caused by the Sri Lankan cassava mosaic virus (SLCMV) in Southeast Asia, and summarize similarities between SLCMV and other cassava mosaic begomoviruses. A SATREPS (Science and Technology Research Partnership for Sustainable Development) project “Development and dissemination of sustainable production systems based on invasive pest management of cassava in Vietnam, Cambodia and Thailand”, was launched in 2016, which has been funded by The Japan International Cooperation Agency (JICA) and The Japan Science and Technology Agency (JST), Japan. The objectives of SATREPS were to establish healthy seed production and dissemination systems for cassava in south Vietnam and Cambodia, and to develop management systems for plant diseases and insect pests of cassava. To achieve these goals, model systems of healthy seed production in Vietnam and Cambodia have been developed incorporating CMD-resistant planting materials through international networks with The International Center for Tropical Agriculture (CIAT) and The International Institute of Tropical Agriculture (IITA). Supplementary Information The online version contains supplementary material available at 10.1007/s11103-021-01168-2.
Collapse
Affiliation(s)
- Ayaka Uke
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Japan
| | - Hiroki Tokunaga
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Yoshinori Utsumi
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Nguyen Anh Vu
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Pham Thi Nhan
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Pao Srean
- University of Battambang (UBB), Battambang, Cambodia
| | - Nguyen Huu Hy
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Le Huy Ham
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | | | - Manabu Ishitani
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Nguyen Hung
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Le Ngoc Tuan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Nguyen Van Hong
- Sub-Department of Plantation and Plant Protection of Tay Ninh Province, Hanoi, Vietnam
| | - Ngo Quang Huy
- Plant Protection Research Institute (PPRI), Hanoi, Vietnam
| | | | - Keiji Takasu
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa Japan
| | - Masashi Ugaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Japan
| |
Collapse
|
13
|
Reed KM, Bargmann BOR. Protoplast Regeneration and Its Use in New Plant Breeding Technologies. Front Genome Ed 2021; 3:734951. [PMID: 34713266 PMCID: PMC8525371 DOI: 10.3389/fgeed.2021.734951] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
The development of gene-editing technology holds tremendous potential for accelerating crop trait improvement to help us address the need to feed a growing global population. However, the delivery and access of gene-editing tools to the host genome and subsequent recovery of successfully edited plants form significant bottlenecks in the application of new plant breeding technologies. Moreover, the methods most suited to achieve a desired outcome vary substantially, depending on species' genotype and the targeted genetic changes. Hence, it is of importance to develop and improve multiple strategies for delivery and regeneration in order to be able to approach each application from various angles. The use of transient transformation and regeneration of plant protoplasts is one such strategy that carries unique advantages and challenges. Here, we will discuss the use of protoplast regeneration in the application of new plant breeding technologies and review pertinent literature on successful protoplast regeneration.
Collapse
Affiliation(s)
| | - Bastiaan O. R. Bargmann
- School of Plant and Environmental Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Oluwasanya DN, Gisel A, Stavolone L, Setter TL. Environmental responsiveness of flowering time in cassava genotypes and associated transcriptome changes. PLoS One 2021; 16:e0253555. [PMID: 34288936 PMCID: PMC8294508 DOI: 10.1371/journal.pone.0253555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022] Open
Abstract
Cassava is an important food security crop in tropical regions of the world. Cassava improvement by breeding is limited by its delayed and poor production of flowers, such that cassava flowering under field conditions indirectly lengthens the breeding cycle. By studying genotype and environment interaction under two Nigerian field conditions (Ubiaja and Ibadan) and three controlled temperature conditions (22°C/18°C, 28/24°C and 34/30°C (day/night)), we found that while early flowering genotypes flowered at similar times and rates under all growing conditions (unfavorable and favorable field and controlled-temperature environments), late flowering genotypes were environmentally sensitive such that they were substantially delayed in unfavorable environments. On the basis of nodes-to-flower, flowering of late genotypes approached the flowering time of early flowering genotypes under relatively cool Ubiaja field conditions and in growth chambers at 22°C, whereas warmer temperatures elicited a delaying effect. Analysis of transcriptomes from leaves of field and controlled-temperature environments revealed that conditions which promote early flowering in cassava have low expression of the flowering repressor gene TEMPRANILLO 1 (TEM1), before and after flowering. Expression data of field plants showed that the balance between flower stimulatory and inhibitory signaling appeared to correlate with flowering time across the environments and genotypes.
Collapse
Affiliation(s)
- Deborah N. Oluwasanya
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
- Bioscience Unit, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
| | - Andreas Gisel
- Bioscience Unit, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Livia Stavolone
- Bioscience Unit, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Tim L. Setter
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Oluwasanya D, Esan O, Hyde PT, Kulakow P, Setter TL. Flower Development in Cassava Is Feminized by Cytokinin, While Proliferation Is Stimulated by Anti-Ethylene and Pruning: Transcriptome Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:666266. [PMID: 34122486 PMCID: PMC8194492 DOI: 10.3389/fpls.2021.666266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 06/08/2023]
Abstract
Cassava, a tropical storage-root crop, is a major source of food security for millions in the tropics. Cassava breeding, however, is hindered by the poor development of flowers and a low ratio of female flowers to male flowers. To advance the understanding of the mechanistic factors regulating cassava flowering, combinations of plant growth regulators (PGRs) and pruning treatments were examined for their effectiveness in improving flower production and fruit set in field conditions. Pruning the fork-type branches, which arise at the shoot apex immediately below newly formed inflorescences, stimulated inflorescence and floral development. The anti-ethylene PGR silver thiosulfate (STS) also increased flower abundance. Both pruning and STS increased flower numbers while having minimal influence on sex ratios. In contrast, the cytokinin benzyladenine (BA) feminized flowers without increasing flower abundance. Combining pruning and STS treatments led to an additive increase in flower abundance; with the addition of BA, over 80% of flowers were females. This three-way treatment combination of pruning+STS+BA also led to an increase in fruit number. Transcriptomic analysis of gene expression in tissues of the apical region and developing inflorescence revealed that the enhancement of flower development by STS+BA was accompanied by downregulation of several genes associated with repression of flowering, including homologs of TEMPRANILLO1 (TEM1), GA receptor GID1b, and ABA signaling genes ABI1 and PP2CA. We conclude that flower-enhancing treatments with pruning, STS, and BA create widespread changes in the network of hormone signaling and regulatory factors beyond ethylene and cytokinin.
Collapse
Affiliation(s)
- Deborah Oluwasanya
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Cassava Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olayemisi Esan
- Cassava Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Peter T. Hyde
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Peter Kulakow
- Cassava Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Tim L. Setter
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Wang J, Jiu S, Xu Y, Sabir IA, Wang L, Ma C, Xu W, Wang S, Zhang C. SVP-like gene PavSVP potentially suppressing flowering with PavSEP, PavAP1, and PavJONITLESS in sweet cherries (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:277-284. [PMID: 33412415 DOI: 10.1016/j.plaphy.2020.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) gene have important functions in flowering and dormancy regulation. However, the molecular mechanism of PavSVP regulating flowering and dormancy in sweet cherry remains unknown. We identified a MADS-box gene SVP-like named PavSVP from sweet cherry, which was closely to PmSVP and PpSVP from Prunus mume and Prunus persica by using phylogenetic tree analysis, suggesting a conserved function with these evolutionarily closer SVP homologs. Subcellular localization analysis indicated that, PavSVP was localized in the nucleus and cytomembrane. PavSVP expression in sweet cherries were observed in vegetative and floral tissues, but much higher level in flower buds. The seasonal expression level of PavSVP was higher during the stage of summer growth in flower buds, and declined gradually toward dormancy and flower initiation. Ectopic expression of PavSVP induced a delayed flowering and the occurrence of abnormal flowers, including curly sepals and plicated siliques in Arabidopsis. Furthermore, protein interaction analysis showed that PavSVP interacted with PavSEP, PavAP1 and PavJONITLESS. Unlike PavSVP, over-expression of PavSEP in Arabidopsis caused early flowering phenotype. In addition, the expression of PavSEP in flower buds was low in summer. These results will help reveal the molecular mechanisms of PavSVP in maintaining the suppression phase of flowering in sweet cherry during summer and winter.
Collapse
Affiliation(s)
- Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| |
Collapse
|
17
|
Elegba W, McCallum E, Gruissem W, Vanderschuren H. Efficient Genetic Transformation and Regeneration of a Farmer-Preferred Cassava Cultivar From Ghana. FRONTIERS IN PLANT SCIENCE 2021; 12:668042. [PMID: 34140963 PMCID: PMC8204248 DOI: 10.3389/fpls.2021.668042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2021] [Indexed: 05/04/2023]
Abstract
Cassava is an important staple crop that provides food and income for about 700 million Africans. Cassava productivity in Africa is limited by viral diseases, mainly cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Genetic barriers such as high heterozygosity, allopolyploidy, poor seed set, and irregular flowering constrain the development of virus-resistant cassava varieties via conventional breeding. Genetic transformation represents a valuable tool to circumvent several challenges associated with the development of virus resistance and other valuable agronomic traits in cassava. The implementation of genetic transformation in many local African cultivars is limited either by the difficulty to produce friable embryogenic callus (FEC), low transformation, and/or regeneration efficiencies. Here, we report the successful induction of organized embryogenic structures (OES) in 11 farmer-preferred cultivars locally grown in Ghana. The production of high quality FEC from one local cultivar, ADI 001, facilitated its genetic transformation with high shoot regeneration and selection efficiency, comparable to the model cassava cultivar 60444. We show that using flow cytometry for analysis of nuclear ploidy in FEC tissues prior to genetic transformation ensures the selection of genetically uniform FEC tissue for transformation. The high percentage of single insertion events in transgenic lines indicates the suitability of the ADI 001 cultivar for the introduction of virus resistance and other useful agronomic traits into the farmer-preferred cassava germplasm in Ghana and Africa.
Collapse
Affiliation(s)
- Wilfred Elegba
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biotechnology and Nuclear Agriculture Research Institute, GAEC, Legon, Ghana
- *Correspondence: Wilfred Elegba, ;
| | - Emily McCallum
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hervé Vanderschuren
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- Plant Genetics, TERRA Research and Teaching Centre, Gembloux Agro BioTech, University of Liège, Gembloux, Belgium
- Hervé Vanderschuren,
| |
Collapse
|
18
|
Sidorova T, Miroshnichenko D, Kirov I, Pushin A, Dolgov S. Effect of Grafting on Viral Resistance of Non-transgenic Plum Scion Combined With Transgenic PPV-Resistant Rootstock. FRONTIERS IN PLANT SCIENCE 2021; 12:621954. [PMID: 33597963 PMCID: PMC7882617 DOI: 10.3389/fpls.2021.621954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
In stone fruit trees, resistance to Plum pox virus (PPV) can be achieved through the specific degradation of viral RNA by the mechanism of RNA interference (RNAi). Transgenic virus-resistant plants, however, raise serious biosafety concerns due to the insertion and expression of hairpin constructs that usually contain various selective foreign genes. Since a mature stone tree represents a combination of scion and rootstock, grafting commercial varieties onto transgenic virus-tolerant rootstocks is a possible approach to mitigate biosafety problems. The present study was aimed at answering the following question: To what extent are molecular RNAi silencing signals transmitted across graft junctions in transgrafted plum trees and how much does it affect PPV resistance in genetically modified (GM)/non-transgenic (NT) counterparts? Two combinations, NT:GM and GM:NT (scion:rootstock), were studied, with an emphasis on the first transgrafting scenario. Viral inoculation was carried out on either the scion or the rootstock. The interspecific rootstock "Elita" [(Prunus pumila L. × P. salicina Lindl.) × (P. cerasifera Ehrh.)] was combined with cv. "Startovaya" (Prunus domestica L.) as a scion. Transgenic plum lines of both cultivars were transformed with a PPV-coat protein (CP)-derived intron-separate hairpin-RNA construct and displayed substantial viral resistance. High-throughput sequence data of small RNA (sRNA) pools indicated that the accumulation of construct-specific small interfering RNA (siRNA) in transgenic plum rootstock reached over 2%. The elevated siRNA level enabled the resistance to PPV and blocked the movement of the virus through the GM tissues into the NT partner when the transgenic tissues were inoculated. At the same time, the mobile siRNA signal was not moved from the GM rootstock to the target NT tissue to a level sufficient to trigger silencing of PPV transcripts and provide reliable viral resistance. The lack of mobility of transgene-derived siRNA molecules was accompanied by the transfer of various endogenous rootstock-specific sRNAs into the NT scion, indicating the exceptional transitivity failure of the studied RNAi signal. The results presented here indicate that transgrafting in woody fruit trees remains an unpredictable practice and needs further in-depth examination to deliver molecular silencing signals.
Collapse
Affiliation(s)
- Tatiana Sidorova
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- *Correspondence: Tatiana Sidorova,
| | - Dmitry Miroshnichenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Alexander Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Sergey Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
- Federal Horticulture Center for Breeding, Agrotechnology and Nursery, Moscow, Russia
| |
Collapse
|
19
|
Odipio J, Getu B, Chauhan RD, Alicai T, Bart R, Nusinow DA, Taylor NJ. Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava. PLoS One 2020; 15:e0227199. [PMID: 31990916 PMCID: PMC6986757 DOI: 10.1371/journal.pone.0227199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/14/2019] [Indexed: 12/24/2022] Open
Abstract
Endogenous FLOWERING LOCUS T homolog MeFT1 was transgenically overexpressed under control of a strong constitutive promoter in cassava cultivar 60444 to determine its role in regulation of flowering and as a potential tool to accelerate cassava breeding. Early profuse flowering was recorded in-vitro in all ten transgenic plant lines recovered, causing eight lines to die within 21 days of culture. The two surviving transgenic plant lines flowered early and profusely commencing as soon as 14 days after establishment in soil in the greenhouse. Both transgenic lines sustained early flowering across the vegetative propagation cycle, with first flowering recorded 30–50 days after planting stakes compared to 90 days for non-transgenic controls. Transgenic plant lines completed five flowering cycles within 200 days in the greenhouse as opposed to twice flowering event in the controls. Constitutive overexpression of MeFT1 generated fully mature male and female flowers and produced a bushy phenotype due to significantly increased flowering-induced branching. Flower induction by MeFT1 overexpression was not graft-transmissible and negatively affected storage root development. Accelerated flowering in transgenic plants was associated with significantly increased mRNA levels of MeFT1 and the three floral meristem identity genes MeAP1, MeLFY and MeSOC1 in shoot apical tissues. These findings imply that MeFT1 encodes flower induction and triggers flowering by recruiting downstream floral meristem identity genes.
Collapse
Affiliation(s)
- John Odipio
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
- National Crops Resources Research Institute, Kampala, Uganda
- Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Beyene Getu
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - R. D. Chauhan
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - Rebecca Bart
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Nigel J. Taylor
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
20
|
Song GQ, Walworth A, Lin T, Chen Q, Han X, Irina Zaharia L, Zhong GY. VcFT-induced mobile florigenic signals in transgenic and transgrafted blueberries. HORTICULTURE RESEARCH 2019; 6:105. [PMID: 31645960 PMCID: PMC6804590 DOI: 10.1038/s41438-019-0188-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 05/03/2023]
Abstract
FLOWERING LOCUS T (FT) can promote early flowering in annual species, but such role has not been well demonstrated in woody species. We produced self and reciprocal grafts involving non-transgenic blueberry (NT) and transgenic blueberry (T) carrying a 35S-driven blueberry FT (VcFT-OX). We demonstrated that the transgenic VcFT-OX rootstock promoted flowering of non-transgenic blueberry scions in the NT (scion):T (rootstock) grafts. We further analyzed RNA-Seq profiles and six groups of phytohormones in both NT:T and NT:NT plants. We observed content changes of several hormone metabolites, in a descending order, in the transgenic NT:T, non-transgenic NT:T, and non-transgenic NT:NT leaves. By comparing differential expression transcripts (DETs) of these tissues in relative to their control, we found that the non-transgenic NT:T leaves had many DETs shared with the transgenic NT:T leaves, but very few with the transgenic NT:T roots. Interestingly, a number of these shared DETs belong to hormone pathway genes, concurring with the content changes of hormone metabolites in both transgenic and non-transgenic leaves of the NT:T plants. These results suggest that phytohormones induced by VcFT-OX in the transgenic leaves might serve as part of the signals that resulted in early flowering in both transgenic plants and the non-transgenic NT:T scions.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Tianyi Lin
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Qiuxia Chen
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - L. Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva, NY 14456 USA
| |
Collapse
|
21
|
Tyagi S, Mazumdar PA, Mayee P, Shivaraj SM, Anand S, Singh A, Madhurantakam C, Sharma P, Das S, Kumar A, Singh A. Natural variation in Brassica FT homeologs influences multiple agronomic traits including flowering time, silique shape, oil profile, stomatal morphology and plant height in B. juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:251-266. [PMID: 30466591 DOI: 10.1016/j.plantsci.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Natural structural variants of regulatory proteins causing quantitative phenotypic consequences have not been reported in plants. Herein, we show that 28 natural structural variants of FT homeologs, isolated from 6 species of Brassica, differ with respect to amino-acid substitutions in regions critical for interactions with FD and represent two evolutionarily distinct categories. Analysis of structural models of selected candidates from Brassica juncea (BjuFT_AAMF1) and Brassica napus (BnaFT_CCLF) predicted stronger binding between BjuFT and Arabidopsis thaliana FD. Over-expression of BjuFT and BnaFT in wild type and ft-10 mutant backgrounds of Arabidopsis validated higher potency of BjuFT in triggering floral transition. Analysis of gain-of-function and artificial miRNA mediated silenced lines of B. juncea implicated Brassica FT in multiple agronomic traits beyond flowering, consistent with a pleiotropic effect. Several dependent and independent traits such as lateral branching, silique shape, seed size, oil-profile, stomatal morphology and plant height were found altered in mutant lines. Enhanced FT levels caused early flowering, which in turn was positively correlated to a higher proportion of desirable fatty acids (PUFA). However, higher FT levels also resulted in altered silique shape and reduced seed size, suggesting trait trade-offs. Modulation of FT levels for achieving optimal balance of trait values and parsing pair-wise interactions among a reportoire of regulatory protein homeologs in polyploid genomes are indeed future areas of crop research.
Collapse
Affiliation(s)
- Shikha Tyagi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | | | - Pratiksha Mayee
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Department of Research, Ankur Seeds Pvt. Ltd., 27, Nagpur, Maharashtra, 440018, India
| | - S M Shivaraj
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Departement de Phytologie, Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Saurabh Anand
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Anupama Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Chaithanya Madhurantakam
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Prateek Sharma
- Department of Energy and Environment, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Sandip Das
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Arun Kumar
- National Phytotron Facility, IARI, New Delhi, 110012, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|
22
|
Silva Souza L, Diniz RP, Neves RDJ, Alves AAC, Oliveira EJD. Grafting as a strategy to increase flowering of cassava. SCIENTIA HORTICULTURAE 2018; 240:544-551. [PMID: 30349150 PMCID: PMC6039848 DOI: 10.1016/j.scienta.2018.06.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 05/22/2023]
Abstract
In cassava (Manihot esculenta Crantz), transferring genes via genetic breeding depends on crosses between contrasting progenitors, which is often limited by the low flowering rate of many genotypes. The main purpose of this work was to evaluate the effect of grafting on floral induction of cassava. For this, three genotypes were used: 1) BRS Formosa: a genotype with low flowering rate; 2) BGM0823: a genotype with high flowering rate; and 3) FLA05-02: a genotype of M. esculenta ssp. flabellifolia with high flowering rate. Cleft grafting was performed to generate the following treatments: Self-grafting of: 1) BGM0823 (Self-0823); 2) BRS Formosa (Self-Formosa); and 3) FLA05-02 (Self-FLA); and grafting of the genotypes, with the first being the scion and the second the rootstock: 4) BGM0823 × BRS Formosa; 5) BGM0823 × FLA05-02; 6) FLA05-02 × BRS Formosa; 7) FLA05-02 × BGM0823; 8) BRS Formosa × BGM0823; 9) BRS Formosa × FLA05-02; and also ungrafted treatments: 10) BGM0823; 11) BRS Formosa; and 12) FLA05-02. The results showed a 201% increase in the production of male flowers, 560% of female flowers and 400% of fruits in BRS Formosa grafted on BGM0823. BGM0823 (rootstock) also increased fruit production by 190% of FLA05-02. The grafted cassava plants exhibited an increase on the shoot production, although there was no change in the fresh root yield. The grafting of genotypes with high flowering rates can induce flowering in genotypes with low flowering rates.
Collapse
Affiliation(s)
- Leonardo Silva Souza
- Universidade Federal do Recôncavo da Bahia, Campus Cruz das Almas, 44380-000 Cruz das Almas, BA, Brazil
| | - Rafael Parreira Diniz
- Universidade Federal do Recôncavo da Bahia, Campus Cruz das Almas, 44380-000 Cruz das Almas, BA, Brazil
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, 44380-000 Cruz das Almas, BA, Brazil
| | | | | | - Eder Jorge de Oliveira
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, 44380-000 Cruz das Almas, BA, Brazil
- Corresponding author.
| |
Collapse
|
23
|
Bull SE, Seung D, Chanez C, Mehta D, Kuon JE, Truernit E, Hochmuth A, Zurkirchen I, Zeeman SC, Gruissem W, Vanderschuren H. Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. SCIENCE ADVANCES 2018; 4:eaat6086. [PMID: 30191180 PMCID: PMC6124905 DOI: 10.1126/sciadv.aat6086] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/20/2018] [Indexed: 05/12/2023]
Abstract
Crop diversification required to meet demands for food security and industrial use is often challenged by breeding time and amenability of varieties to genome modification. Cassava is one such crop. Grown for its large starch-rich storage roots, it serves as a staple food and a commodity in the multibillion-dollar starch industry. Starch is composed of the glucose polymers amylopectin and amylose, with the latter strongly influencing the physicochemical properties of starch during cooking and processing. We demonstrate that CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-mediated targeted mutagenesis of two genes involved in amylose biosynthesis, PROTEIN TARGETING TO STARCH (PTST1) or GRANULE BOUND STARCH SYNTHASE (GBSS), can reduce or eliminate amylose content in root starch. Integration of the Arabidopsis FLOWERING LOCUS T gene in the genome-editing cassette allowed us to accelerate flowering-an event seldom seen under glasshouse conditions. Germinated seeds yielded S1, a transgene-free progeny that inherited edited genes. This attractive new plant breeding technique for modified cassava could be extended to other crops to provide a suite of novel varieties with useful traits for food and industrial applications.
Collapse
Affiliation(s)
- Simon E. Bull
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
- Corresponding author. (S.E.B.); (H.V.)
| | - David Seung
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Christelle Chanez
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Devang Mehta
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Joel-Elias Kuon
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Elisabeth Truernit
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anton Hochmuth
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Irene Zurkirchen
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Samuel C. Zeeman
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Hervé Vanderschuren
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Corresponding author. (S.E.B.); (H.V.)
| |
Collapse
|