1
|
Aleamotuʻa M, Baker JK, McCurdy DW, Collings DA. Phi thickenings in Brassica oleracea roots are induced by osmotic stress and mechanical effects, both involving jasmonic acid. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:756-769. [PMID: 34677585 DOI: 10.1093/jxb/erab468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Phi thickenings are peculiar secondary cell wall thickenings found in radial walls of cortical cells in plant roots. However, while thickenings are widespread in the plant kingdom, research into their development has been lacking. Here, we describe a simple system for rapid induction of phi thickenings in primary roots of Brassica. Four-day-old seedlings were transferred from control agar plates to new plates containing increased levels of osmotica. Phi thickening development occurred within a narrow region of the differentiation zone proportional to osmolarity, with cellulose deposition and lignification starting after 12h and 15h, respectively. However, osmoprotectants not only failed to induce phi thickenings, but inhibited induction when tested in combination with thickening-inducing osmotica. An independent, biomechanical pathway exists regulating phi thickening induction, with root growth rates and substrate texture being important factors in determining thickening induction. Phi thickening development is also controlled by stress-related plant hormones, most notably jasmonic acid, but also abscisic acid. Our research not only provides the first understanding of the developmental pathways controlling phi thickening induction, but also provides tools with which the functions of these enigmatic structures might be clarified.
Collapse
Affiliation(s)
- Maketalena Aleamotuʻa
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jaime K Baker
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - David W McCurdy
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - David A Collings
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Wu D, Li L, Li C, Dun B, Zhang J, Li T, Zhou C, Tan D, Yang C, Huang G, Zhang X. Apoplastic histochemical features of plant root walls that may facilitate ion uptake and retention. Open Life Sci 2022; 16:1347-1356. [PMID: 35071769 PMCID: PMC8749128 DOI: 10.1515/biol-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
We used brightfield and epifluorescence microscopy, as well as permeability tests, to investigate the apoplastic histochemical features of plant roots associated with ion hyperaccumulation, invasion, and tolerance of oligotrophic conditions. In hyperaccumulator species with a hypodermis (exodermis absent), ions penetrated the root apex, including the root cap. By contrast, in non-hyperaccumulator species possessing an exodermis, ions did not penetrate the root cap. In vivo, the lignified hypodermis blocked the entry of ions into the cortex, while root exodermis absorbed ions and restricted them to the cortex. The roots of the hyperaccumulators Pteris vittata and Cardamine hupingshanensis, as well as the aquatic invasives Alternanthera philoxeroides, Eichhornia crassipes, and Pistia stratiotes, contained lignin and pectins. These compounds may trap and store ions before hypodermis maturation, facilitating ion hyperaccumulation and retention in the apoplastic spaces of the roots. These apoplastic histochemical features were consistent with certain species-specific characters, including ion hyperaccumulation, invasive behaviors in aquatic environments, or tolerance of oligotrophic conditions. We suggest that apoplastic histochemical features of the root may act as invasion mechanisms, allowing these invasive aquatic plants to outcompete indigenous plants for ions.
Collapse
Affiliation(s)
- Di Wu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Linbao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Chengdao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Bicheng Dun
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Ten Li
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, and Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, Hubei 434025, China
| | - Cunyu Zhou
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, and Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, Hubei 434025, China
| | - Debao Tan
- Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, China
| | - Chaodong Yang
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, and Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, Hubei 434025, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Xia Zhang
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, and Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
3
|
Julius BT, McCubbin TJ, Mertz RA, Baert N, Knoblauch J, Grant DG, Conner K, Bihmidine S, Chomet P, Wagner R, Woessner J, Grote K, Peevers J, Slewinski TL, McCann MC, Carpita NC, Knoblauch M, Braun DM. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning. THE PLANT CELL 2021; 33:3348-3366. [PMID: 34323976 PMCID: PMC8505866 DOI: 10.1093/plcell/koab193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.
Collapse
Affiliation(s)
- Benjamin T Julius
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Tyler J McCubbin
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Rachel A Mertz
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Present address: Inari Agriculture, West Lafayette, Indiana 47906, USA
| | - Nick Baert
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - DeAna G Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri 65211, USA
| | - Kyle Conner
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Saadia Bihmidine
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Paul Chomet
- NRGene Inc., 8910 University Center Lane, San Diego, California 92122, USA
| | - Ruth Wagner
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Jeff Woessner
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Karen Grote
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | | | | | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Nicholas C Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - David M Braun
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Author for correspondence:
| |
Collapse
|
4
|
Kováč J, Lux A, Soukup M, Weidinger M, Gruber D, Lichtscheidl I, Vaculík M. A new insight on structural and some functional aspects of peri-endodermal thickenings, a specific layer in Noccaea caerulescens roots. ANNALS OF BOTANY 2020; 126:423-434. [PMID: 32296831 PMCID: PMC7424770 DOI: 10.1093/aob/mcaa069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Cell walls of the peri-endodermis, a layer adjacent to the endodermis in alpine pennycress (Noccaea caerulescens) roots, form C-shaped peri-endodermal thickenings (PETs). Despite its specific position close to the endodermis, the assumed similarity of PETs to phi thickenings in many other species, and the fact that N. caerulescens is a well-studied heavy-metal-hyperaccumulating plant, the PET as a root trait is still not understood. METHODS Here, we characterized PET cell walls by histochemical techniques, Raman spectroscopy, immunolabelling and electron microscopy. Moreover, a role of PETs in solute transport was tested and compared with Arabidopsis thaliana plants, which do not form PETs in roots. KEY RESULTS Cell walls with PETs have a structured relief mainly composed of cellulose and lignin. Suberin, typical of endodermal cells, is missing but pectins are present on the inner surface of the PET. Penetrating dyes are not able to cross PETs either by the apoplasmic or the symplasmic pathway, and a significantly higher content of metals is found in root tissues outside of PETs than in innermost tissues. CONCLUSIONS Based on their development and chemical composition, PETs are different from the endodermis and closely resemble phi thickenings. Contrarily, the different structure and dye impermeability of PETs, not known in the case of phi thickenings, point to an additional barrier function which makes the peri-endodermis with PETs a unique and rare layer.
Collapse
Affiliation(s)
- Ján Kováč
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia and
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Milan Soukup
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Daniela Gruber
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Irene Lichtscheidl
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia and
| |
Collapse
|
5
|
De-Jesús-García R, Rosas U, Dubrovsky JG. The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:383-397. [PMID: 32213271 DOI: 10.1071/fp19144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The root is the main organ through which water and mineral nutrients enter the plant organism. In addition, root fulfils several other functions. Here, we propose that the root also performs the barrier function, which is essential not only for plant survival but for plant acclimation and adaptation to a constantly changing and heterogeneous soil environment. This function is related to selective uptake and avoidance of some soil compounds at the whole plant level. We review the toolkit of morpho-anatomical, structural, and other components that support this view. The components of the root structure involved in selectivity, permeability or barrier at a cellular, tissue, and organ level and their properties are discussed. In consideration of the arguments supporting barrier function of plant roots, evolutionary aspects of this function are also reviewed. Additionally, natural variation in selective root permeability is discussed which suggests that the barrier function is constantly evolving and is subject of natural selection.
Collapse
Affiliation(s)
- Ramces De-Jesús-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico; and Corresponding author.
| |
Collapse
|
6
|
The Induction and Roles Played by Phi Thickenings in Orchid Roots. PLANTS 2019; 8:plants8120574. [PMID: 31817554 PMCID: PMC6963310 DOI: 10.3390/plants8120574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 11/23/2022]
Abstract
Phi thickenings are specialised secondary wall thickenings present in the root cortex of many plant species, including both angiosperms and gymnosperms. While environmental stresses induce phi thickenings, their role(s) in the root remain unclear. Suggested functions include regulation of transport through the apoplast in a manner similar to the Casparian strip, limiting fungal infections, and providing mechanical support to the root. We investigated phi thickening induction and function in Miltoniopsis sp., an epiphytic orchid. As movement of a fluorescent tracer through the apoplast was not blocked by phi thickenings, and as phi thickenings developed in the roots of sterile cultures in the absence of fungus and did not prevent fungal colonisation of cortical cells, the phi thickenings in Miltoniopsis did not function as a barrier. Phi thickenings, absent in roots grown on agar, remained absent when plants were transplanted to moist soil, but were induced when plants were transplanted to well-drained media, and by the application of water stress. We suggest that it is likely that phi thickenings stabilise to the root during water stress. Nevertheless, the varied phi thickening induction responses present in different plant species suggest that the phi thickenings may play multiple adaptive roles depending on species.
Collapse
|
7
|
Aleamotu'a M, McCurdy DW, Collings DA. Phi thickenings in roots: novel secondary wall structures responsive to biotic and abiotic stresses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4631-4642. [PMID: 31106830 DOI: 10.1093/jxb/erz240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Phi thickenings are specialized secondary walls found in root cortical cells. Despite their widespread occurrence throughout the plant kingdom, these specialized thickenings remain poorly understood. First identified by Van Tieghem in 1871, phi thickenings are a lignified and thickened cell wall band that is deposited inside the primary wall, as a ring around the cells' radial walls. Phi thickenings can, however, display structural variations including a fine, reticulate network of wall thickenings extending laterally from the central lignified band. While phi thickenings have been proposed to mechanically strengthen roots, act as a permeability barrier to modulate solute movement, and regulate fungal interactions, these possibilities remain to be experimentally confirmed. Furthermore, since temporal and spatial development of phi thickenings varies widely between species, thickenings may perform diverse roles in different species. Phi thickenings can be induced by abiotic stresses in different species; they can, for example, be induced by heavy metals in the Zn/Cd hyperaccumulator Thlaspi caerulescens, and in a cultivar-specific manner by water stress in Brassica. This latter observation provides an experimental platform to probe phi thickening function, and to identify genetic pathways responsible for their formation. These pathways might be expected to differ from those involved in secondary wall formation in xylem, since phi thickening deposition in not linked to programmed cell death.
Collapse
Affiliation(s)
- Maketalena Aleamotu'a
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan NSW, Australia
| | | | | |
Collapse
|