1
|
Amoako FK, Sulieman S, Mühling KH. Mineral and Carbon Metabolic Adjustments in Nodules of Symbiotically Grown Faba Bean ( Vicia faba L.) Varieties in Response to Organic Phosphorus Supplementation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3888. [PMID: 38005785 PMCID: PMC10675292 DOI: 10.3390/plants12223888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Phosphorus (P) is a major limiting factor for legume and symbiotic nitrogen fixation (SNF). Although overall adaptations of legumes to P supplementation have been extensively studied in connection with inorganic P, little information is currently available regarding nodulation or SNF responses to organic P (Po) in hydroponics. We investigated the mineral and carbon metabolism of Po-induced nodules of two contrasting faba bean varieties grown hydroponically under inorganic P (Pi), viz., in P-deficient (2 µM KH2PO4, -Pi), sufficient-P (200 µM KH2PO4, +Pi), and phytic acid (200 µM, Po) conditions, and were inoculated with Rhizobium leguminosarum bv. viciae 3841 and grown for 30 days. The results consistently reveal similar growth and biomass partitioning patterns between +Pi and Po, with both varying substantially from -Pi. In comparison, +Pi and Po observed equivalent accumulations of overall elemental P concentrations, with both increasing by 114 and 119%, respectively, relative to -Pi. A principal component analysis on metabolites showed a clear separation of the -Pi treatment from the others, with +Pi and Po correlating closely together, highlighting the nonsignificant differences between them. Additionally, the δ15N abundance of shoots, roots, and nodules was not significantly different between treatments and varieties and exhibited negative δ15N signatures for all tissues. Our study provides a novel perspective on mineral and carbon metabolism and their regulation of the growth, functioning, and reprogramming of nodules upon phytate supply.
Collapse
Affiliation(s)
| | | | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany; (F.K.A.); (S.S.)
| |
Collapse
|
2
|
Sehar S, Adil MF, Ma Z, Karim MF, Faizan M, Zaidi SSA, Siddiqui MH, Alamri S, Zhou F, Shamsi IH. Phosphorus and Serendipita indica synergism augments arsenic stress tolerance in rice by regulating secondary metabolism related enzymatic activity and root metabolic patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114866. [PMID: 37023649 DOI: 10.1016/j.ecoenv.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Fazal Karim
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Syed Shujaat Ali Zaidi
- Center for Innovation in Brain Science, Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fanrui Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Adjei-Nsiah S, Martei D, Yakubu A, Ulzen J. Soybean ( Glycine max L. Merrill) responds to phosphorus application and rhizobium inoculation on Acrisols of the semi-deciduous forest agro-ecological zone of Ghana. PeerJ 2022; 10:e12671. [PMID: 35256914 PMCID: PMC8898006 DOI: 10.7717/peerj.12671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/02/2021] [Indexed: 01/11/2023] Open
Abstract
Soybean cultivation in Ghana is limited mainly to the Guinea savanna and the forest/savanna transitional agro-ecological zones. Although soybean can be cultivated in the semi-deciduous forest zone, low soil pH and limited nodulation limit its productivity in this zone. In this study, a randomized complete block design, with four replications, was used to test if rhizobia inoculation and/or p-fertilizer could improve yield of soybean in the semi-deciduous forest zone. The residual effects of the treatments were tested on maize and soybean sequentially during the 2018 and 2019 cropping seasons. The inoculation study was repeated in 2020. Phosphorus and inoculation significantly (p = 0.0009) increased soybean grain yield in the 2018 cropping season by 88% and 108%, respectively over the control. Co-application of P and inoculant increased grain yield 3-fold over the control. Maize grain yield ranged from 4.3 t ha-1 in the control plots to 5.2 t ha-1 in treated plots but did not differ significantly among treatments. In 2020, the combined application of P and inoculant produced a significantly (0.002) higher yield than any of the other treatments. This demonstrates that soybean can be grown economically in the semi-deciduous forest agro-ecological zone of Ghana. Co-application of P and inoculant appeared cost-effective, in terms of return on investment.
Collapse
Affiliation(s)
- Samuel Adjei-Nsiah
- Forest and Horticultural Crops Research Centre, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- International Institute of Tropical Agricultural (IITA), Ibadan, Nigeria
| | - David Martei
- Forest and Horticultural Crops Research Centre, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Adam Yakubu
- Forest and Horticultural Crops Research Centre, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Jacob Ulzen
- Forest and Horticultural Crops Research Centre, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Akram MA, Wang X, Hu W, Xiong J, Zhang Y, Deng Y, Ran J, Deng J. Convergent Variations in the Leaf Traits of Desert Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E990. [PMID: 32759791 PMCID: PMC7463800 DOI: 10.3390/plants9080990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022]
Abstract
Convergence is commonly caused by environmental filtering, severe climatic conditions and local disturbance. The basic aim of the present study was to understand the pattern of leaf traits across diverse desert plant species in a common garden, in addition to determining the effect of plant life forms (PLF), such as herb, shrub and subshrub, phylogeny and soil properties on leaf traits. Six leaf traits, namely carbon (C), nitrogen (N), phosphorus (P), potassium (K), δ13C and leaf water potential (LWP) of 37 dominant desert plant species were investigated and analyzed. The C, N, K and δ13C concentrations in leaves of shrubs were found higher than herbs and subshrubs; however, P and LWP levels were higher in the leaves of subshrubs following herbs and shrubs. Moreover, leaf C showed a significant positive correlation with N and a negative correlation with δ13C. Leaf N exhibited a positive correlation with P. The relationship between soil and plant macro-elements was found generally insignificant but soil C and N exhibited a significant positive correlation with leaf P. Taxonomy showed a stronger effect on leaf C, N, P and δ13C than soil properties, explaining >50% of the total variability. C3 plants showed higher leaf C, N, P, K and LWP concentration than C4 plants, whereas C4 plants had higher δ13C than C3 plants. Legumes exhibited higher leaf C, N, K and LWP than nonlegumes, while nonlegumes had higher P and δ13C concentration than legumes. In all the species, significant phylogenetic signals (PS) were detected for C and N and nonsignificant PS for the rest of the leaf traits. In addition, these phylogenetic signals were found lower (K-value < 1), and the maximum K-value was noted for C (K = 0.35). The plants of common garden evolved and adapted themselves for their survival in the arid environment and showed convergent variations in their leaf traits. However, these variations were not phylogenetics-specific. Furthermore, marks of convergence found in leaf traits of the study area were most likely due to the environmental factors.
Collapse
Affiliation(s)
- Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiaoting Wang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junlan Xiong
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yahui Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yan Deng
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
5
|
Chisanga K, Mbega ER, Ndakidemi PA. Prospects of Using Termite Mound Soil OrganicAmendment for Enhancing Soil Nutrition inSouthern Africa. PLANTS 2020; 9:plants9050649. [PMID: 32443902 PMCID: PMC7284692 DOI: 10.3390/plants9050649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/16/2022]
Abstract
Termite mound soils are reportedly utilized as an alternative to NPK fertilizers by cash constrained smallholder farmers in some parts of Southern Africa. However, there is limited knowledge regarding their mineral nutritional value. The intention of this work was therefore to investigate the macro and micronutrient composition of different sections of the termite mounds; top, base and neighboring areas. The study approach involved physical and chemical analysis of 36 sites across Pemba and Choma districts in Southern Zambia through collection of soil samples in triplicate at 0–20 cm depth, using a soil auger. Findings revealed that the soil pH had elevated levels in the base segments of the termite mounds compared with the top and the neighbouring soils. However, elevated N, P and K levels were recorded in the top sections with significant differences (p < 0.05) in clay and silt composition observed. Additionally, metallic micronutrients, Cu and Zn were also found to be elevated in termite mounds in contrast to surrounding soils. We concluded that top termite mound soil should be considered as part of an integrated nutrient management strategy by financially challenged smallholder farmers cultivating in light textured soils of southern Africa.
Collapse
Affiliation(s)
- Kafula Chisanga
- Department of Sustainable Agriculture, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23311, Tanzania; (E.R.M.); (P.A.N.)
- Centre for Research, Agriculture Advancement, Teaching Excellence and Sustainability (CREATES) in Food and Nutrition Security, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23311, Tanzania
- Correspondence: ; Tel.: +255-783-640-428
| | - Ernest R. Mbega
- Department of Sustainable Agriculture, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23311, Tanzania; (E.R.M.); (P.A.N.)
- Centre for Research, Agriculture Advancement, Teaching Excellence and Sustainability (CREATES) in Food and Nutrition Security, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23311, Tanzania
| | - Patrick A. Ndakidemi
- Department of Sustainable Agriculture, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23311, Tanzania; (E.R.M.); (P.A.N.)
- Centre for Research, Agriculture Advancement, Teaching Excellence and Sustainability (CREATES) in Food and Nutrition Security, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23311, Tanzania
| |
Collapse
|