1
|
Zhu YG, Peng J, Chen C, Xiong C, Li S, Ge A, Wang E, Liesack W. Harnessing biological nitrogen fixation in plant leaves. TRENDS IN PLANT SCIENCE 2023; 28:1391-1405. [PMID: 37270352 DOI: 10.1016/j.tplants.2023.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
The importance of biological nitrogen fixation (BNF) in securing food production for the growing world population with minimal environmental cost has been increasingly acknowledged. Leaf surfaces are one of the biggest microbial habitats on Earth, harboring diverse free-living N2-fixers. These microbes inhabit the epiphytic and endophytic phyllosphere and contribute significantly to plant N supply and growth. Here, we summarize the contribution of phyllosphere-BNF to global N cycling, evaluate the diversity of leaf-associated N2-fixers across plant hosts and ecosystems, illustrate the ecological adaptation of N2-fixers to the phyllosphere, and identify the environmental factors driving BNF. Finally, we discuss potential BNF engineering strategies to improve the nitrogen uptake in plant leaves and thus sustainable food production.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jingjing Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chao Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shule Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Anhui Ge
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| |
Collapse
|
2
|
Guo K, Yang J, Yu N, Luo L, Wang E. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. PLANT COMMUNICATIONS 2023; 4:100499. [PMID: 36447432 PMCID: PMC10030364 DOI: 10.1016/j.xplc.2022.100499] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 05/04/2023]
Abstract
Nitrogen is abundant in the atmosphere but is generally the most limiting nutrient for plants. The inability of many crop plants, such as cereals, to directly utilize freely available atmospheric nitrogen gas means that their growth and production often rely heavily on the application of chemical fertilizers, which leads to greenhouse gas emissions and the eutrophication of water. By contrast, legumes gain access to nitrogen through symbiotic association with rhizobia. These bacteria convert nitrogen gas into biologically available ammonia in nodules through a process termed symbiotic biological nitrogen fixation, which plays a decisive role in ecosystem functioning. Engineering cereal crops that can fix nitrogen like legumes or associate with nitrogen-fixing microbiomes could help to avoid the problems caused by the overuse of synthetic nitrogen fertilizer. With the development of synthetic biology, various efforts have been undertaken with the aim of creating so-called "N-self-fertilizing" crops capable of performing autonomous nitrogen fixation to avoid the need for chemical fertilizers. In this review, we briefly summarize the history and current status of engineering N-self-fertilizing crops. We also propose several potential biotechnological approaches for incorporating biological nitrogen fixation capacity into non-legume plants.
Collapse
Affiliation(s)
- Kaiyan Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Li Luo
- School of Life Sciences, Shanghai Key Laboratory of Bioenergy Crops, Shanghai University, Shanghai 200444, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
3
|
Minamisawa K. Mitigation of greenhouse gas emission by nitrogen-fixing bacteria. Biosci Biotechnol Biochem 2022; 87:7-12. [PMID: 36354103 DOI: 10.1093/bbb/zbac177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Chemical nitrogen fixation by the Haber-Bosch method permitted industrial-scale fertilizer production that supported global population growth, but simultaneously released reactive nitrogen into the environment. This minireview highlights the potential for bacterial nitrogen fixation and mitigation of greenhouse gas (GHG) emissions from soybean and rice fields. Nitrous oxide (N2O), a GHG, is mainly emitted from agricultural use of nitrogen fertilizer and symbiotic nitrogen fixation. Some rhizobia have a denitrifying enzyme system that includes an N2O reductase and are able to mitigate N2O emission from the rhizosphere of leguminous plants. Type II methane (CH4)-oxidizing bacteria (methanotrophs) are endophytes in paddy rice roots and fix N2 using CH4 (a GHG) as an energy source, mitigating the emission of CH4 and reducing nitrogen fertilizer usage. Thus, symbiotic nitrogen fixation shows potential for GHG mitigation in soybean and rice fields while simultaneously supporting sustainable agriculture.
Collapse
Affiliation(s)
- Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
In Vivo Evidence of Single 13C and 15N Isotope-Labeled Methanotrophic Nitrogen-Fixing Bacterial Cells in Rice Roots. mBio 2022; 13:e0125522. [PMID: 35608299 PMCID: PMC9239180 DOI: 10.1128/mbio.01255-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methane-oxidizing bacteria (methanotrophs) play an ecological role in methane and nitrogen fluxes because they are capable of nitrogen fixation and methane oxidation, as indicated by genomic and cultivation-dependent studies. However, the chemical relationships between methanotrophy and diazotrophy and aerobic and anaerobic reactions, respectively, in methanotrophs remain unclear. No study has demonstrated the cooccurrence of both bioactivities in a single methanotroph bacterium in its natural environment. Here, we demonstrate that both bioactivities in type II methanotrophs occur at the single-cell level in the root tissues of paddy rice (Oryza sativa L. cv. Nipponbare). We first verified that difluoromethane, an inhibitor of methane monooxygenase, affected methane oxidation in rice roots. The results indicated that methane assimilation in the roots mostly occurred due to oxygen-dependent processes. Moreover, the results indicated that methane oxidation-dependent and methane oxidation-independent nitrogen fixation concurrently occurred in bulk root tissues. Subsequently, we performed fluorescence in situ hybridization and NanoSIMS analyses, which revealed that single cells of type II methanotrophs (involving six amplicon sequence variants) in paddy rice roots simultaneously and logarithmically fixed stable isotope gases 15N2 and 13CH4 during incubation periods of 0, 23, and 42 h, providing in vivo functional evidence of nitrogen fixation in methanotrophic cells. Furthermore, 15N enrichment in type II methanotrophs at 42 h varied among cells with an increase in 13C accumulation, suggesting that either the release of fixed nitrogen into root systems or methanotroph metabolic specialization is dependent on different microenvironmental niches in the root.
Collapse
|
5
|
Cui J, Zhang M, Chen L, Zhang S, Luo Y, Cao W, Zhao J, Wang L, Jia Z, Bao Z. Methanotrophs Contribute to Nitrogen Fixation in Emergent Macrophytes. Front Microbiol 2022; 13:851424. [PMID: 35479617 PMCID: PMC9036440 DOI: 10.3389/fmicb.2022.851424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Root-associated aerobic methanotroph plays an important role in reducing methane emissions from wetlands. In this study, we examined the activity of methane-dependent nitrogen fixation and active nitrogen-fixing bacterial communities on the roots of Typha angustifolia and Scirpus triqueter using a 15N-N2 feeding experiment and a cDNA-based clone library sequence of the nifH gene, respectively. A 15N-N2 feeding experiment showed that the N2 fixation rate of S. triqueter (1.74 μmol h-1 g-1 dry weight) was significantly higther than that of T. angustifolia (0.48 μmol h-1 g-1 dry weight). The presence of CH4 significantly increased the incorporation of 15N-labeled N2 into the roots of both plants, and the rate of CH4-dependent N2 fixation of S. triqueter (5.6 μmol h-1 g-1 dry weight) was fivefold higher than that of T. angustifolia (0.94 μmol h-1 g-1 dry weight). The active root-associated diazotrophic communities differed between the plant species. Diazotrophic Methylosinus of the Methylocystaceae was dominant in S. triqueter, while Rhizobium of the Rhizobiaceae was dominant in T. angustifolia. However, there were no significant differences in the copy numbers of nifH between plant species. These results suggest that N2 fixation was enhanced by the oxidation of CH4 in the roots of macrophytes grown in natural wetlands and that root-associated Methylocystacea, including Methylosinus, contribute to CH4 oxidation-dependent N2 fixation.
Collapse
Affiliation(s)
- Jing Cui
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- The High School Affiliated to Minzu University of China, Hohhot, China
| | - Meng Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Linxia Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ying Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weiwei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Culture-independent assessment of the diazotrophic Bradyrhizobium communities in the Pampa and Atlantic Forest Biomes localities in southern Brazil. Syst Appl Microbiol 2021; 44:126228. [PMID: 34265499 DOI: 10.1016/j.syapm.2021.126228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
The isolation of rhizobial strains from the root and stem nodules remains a commonly used method despite its limitations as it enables the identification of mainly dominant symbiotic groups within rhizobial communities. To overcome these limitations, we used genus-specific nifD primers in a culture-independent assessment of Bradyrhizobium communities inhabiting soils in southern Brazil. The majority of nifD sequences were generated from DNA isolated from tropical-lowland pasture soils, although some soil samples originated from the Campos de Cima da Serra volcanic plateau. In the nifD tree, all the bradyrhizobial sequences comprised 38 clades, including 18 new clades. The sequences generated in this study were resolved into 22 clades and 21 singletons. The nifD bradyrhizobial assemblage contained Azorhizobium and α-proteobacterial methylotrophic genera, suggesting that these genera may have acquired their nif loci from Bradyrhizobium donors. The most common in the lowland pasture soils subclade III.3D branch comprises the isolates of mainly an American origin. On the other hand, subclade III.4, which was earlier detected in Brazil among Bradyrhizobium isolates nodulating native lupins, appears more common in the Campos de Cima da Serra soils. The second-largest group, Clade XXXVIII, has not yet been reported in culture-dependent studies, while another common group called Clade I represents a symbiovar predominating in Australia. The identification of the diverse nifD Clade I haplotypes in the tropical-lowland pastures infested by Australian Acacia spp implies that the introduction of these legumes to southern Brazil has resulted in the dissemination of their bradyrhizobial symbionts.
Collapse
|
7
|
Liu J, Han J, Zhu C, Cao W, Luo Y, Zhang M, Zhang S, Jia Z, Yu R, Zhao J, Bao Z. Elevated Atmospheric CO 2 and Nitrogen Fertilization Affect the Abundance and Community Structure of Rice Root-Associated Nitrogen-Fixing Bacteria. Front Microbiol 2021; 12:628108. [PMID: 33967976 PMCID: PMC8103900 DOI: 10.3389/fmicb.2021.628108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Elevated atmospheric CO2 (eCO2) results in plant growth and N limitation, yet how root-associated nitrogen-fixing bacterial communities respond to increasing atmospheric CO2 and nitrogen fertilization (eN) during the growth stages of rice is unclear. Using the nifH gene as a molecular marker, we studied the combined effect of eCO2 and eN on the diazotrophic community and abundance at two growth stages in rice (tillering, TI and heading, HI). Quantitative polymerase chain reaction (qPCR) showed that eN had no obvious effect on nifH abundance in rice roots under either ambient CO2 (aCO2) or eCO2 treatment at the TI stage; in contrast, at the HI, nifH copy numbers were increased under eCO2 and decreased under aCO2. For rhizosphere soils, eN significantly reduced the abundance of nifH under both aCO2 and eCO2 treatment at the HI stage. Elevated CO2 significantly increased the nifH abundance in rice roots and rhizosphere soils with nitrogen fertilization, but had no obvious effect without N addition at the HI stage. There was a significant interaction [CO2 × N fertilization] effect on nifH abundance in root zone at the HI stage. In addition, the nifH copy numbers in rice roots were significantly higher at the HI stage than at the TI stage. Sequencing analysis indicated that the root-associated diazotrophic community structure tended to cluster according to the nitrogen fertilization treatment and that Rhizobiales were the dominant diazotrophs in all root samples at the HI stage. Additionally, nitrogen fertilization significantly increased the relative abundance of Methylosinus (Methylocystaceae) under eCO2 treatment, but significantly decreased the relative abundance of Rhizobium (Rhizobiaceae) under aCO2 treatment. Overall, the combined effect of eN and eCO2 stimulates root-associated diazotrophic methane-oxidizing bacteria while inhibits heterotrophic diazotrophs.
Collapse
Affiliation(s)
- Jumei Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jingjing Han
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Weiwei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ying Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Meng Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ruihong Yu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| |
Collapse
|
8
|
Okamoto T, Shinjo R, Nishihara A, Uesaka K, Tanaka A, Sugiura D, Kondo M. Genotypic Variation of Endophytic Nitrogen-Fixing Activity and Bacterial Flora in Rice Stem Based on Sugar Content. FRONTIERS IN PLANT SCIENCE 2021; 12:719259. [PMID: 34447404 PMCID: PMC8383490 DOI: 10.3389/fpls.2021.719259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 05/14/2023]
Abstract
Enhancement of the nitrogen-fixing ability of endophytic bacteria in rice is expected to result in improved nitrogen use under low-nitrogen conditions. Endophytic nitrogen-fixing bacteria require a large amount of energy to fix atmospheric nitrogen. However, it is unknown which carbon source and bacteria would affect nitrogen-fixing activity in rice. Therefore, this study examined genotypic variations in the nitrogen-fixing ability of rice plant stem as affected by non-structural carbohydrates and endophytic bacterial flora in field-grown rice. In the field experiments, six varieties and 10 genotypes of rice were grown in 2017 and 2018 to compare the acetylene reduction activity (nitrogen-fixing activity) and non-structural carbohydrates (glucose, sucrose, and starch) concentration in their stems at the heading stage. For the bacterial flora analysis, two genes were amplified using a primer set of 16S rRNA and nitrogenase (NifH) gene-specific primers. Next, acetylene reduction activity was correlated with sugar concentration among genotypes in both years, suggesting that the levels of soluble sugars influenced stem nitrogen-fixing activity. Bacterial flora analysis also suggested the presence of common and genotype-specific bacterial flora in both 16S rRNA and nifH genes. Similarly, bacteria classified as rhizobia, such as Bradyrhizobium sp. (Alphaproteobacteria) and Paraburkholderia sp. (Betaproteobacteria), were highly abundant in all rice genotypes, suggesting that these bacteria make major contributions to the nitrogen fixation process in rice stems. Gammaproteobacteria were more abundant in CG14 as well, which showed the highest acetylene reduction activity and sugar concentration among genotypes and is also proposed to contribute to the higher amount of nitrogen-fixing activity.
Collapse
Affiliation(s)
- Takanori Okamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- *Correspondence: Takanori Okamoto
| | - Rina Shinjo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Arisa Nishihara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Motohiko Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Motohiko Kondo
| |
Collapse
|