1
|
Mano NA, Shaikh MA, Widhalm JR, Yoo CY, Mickelbart MV. Transcriptional repression of GTL1 under water-deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance. PLANT DIRECT 2024; 8:e594. [PMID: 38799417 PMCID: PMC11117050 DOI: 10.1002/pld3.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
Collapse
Affiliation(s)
- Noel Anthony Mano
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological and Environmental SciencesHeidelberg UniversityTiffinOhioUSA
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Mearaj A. Shaikh
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Joshua R. Widhalm
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Chan Yul Yoo
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Michael V. Mickelbart
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
2
|
Wang F, Chen J, Tang R, Wang R, Ahmad S, Liu Z, Peng D. Research Progress on Anthocyanin-Mediated Regulation of 'Black' Phenotypes of Plant Organs. Curr Issues Mol Biol 2023; 45:7242-7256. [PMID: 37754242 PMCID: PMC10527681 DOI: 10.3390/cimb45090458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
The color pattern is one of the most important characteristics of plants. Black stands out among the vibrant colors due to its rare and distinctive nature. While some plant organs appear black, they are, in fact, dark purple. Anthocyanins are the key compounds responsible for the diverse hues in plant organs. Cyanidin plays an important role in the deposition of black pigments in various plant organs, such as flower, leaf, and fruit. A number of structural genes and transcription factors are involved in the metabolism of anthocyanins in black organs. It has been shown that the high expression of R2R3-MYB transcription factors, such as PeMYB7, PeMYB11, and CsMYB90, regulates black pigmentation in plants. This review provides a comprehensive overview of the anthocyanin pathways that are involved in the regulation of black pigments in plant organs, including flower, leaf, and fruit. It is a great starting point for further investigation into the molecular regulation mechanism of plant color and the development of novel cultivars with black plant organs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| |
Collapse
|
3
|
Zhao Y, Li Y, Zhen X, Zhang J, Zhang Q, Liu Z, Hou S, Han Y, Zhang B. Uncovering the mechanism of anthocyanin accumulation in a purple-leaved variety of foxtail millet ( Setaria italica) by transcriptome analysis. PeerJ 2022; 10:e14099. [PMID: 36213506 PMCID: PMC9536322 DOI: 10.7717/peerj.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023] Open
Abstract
Anthocyanin is a natural pigment that has a functional role in plants to attract pollinating insects and is important in stress response. Foxtail millet (Setaria italica) is known as a nutritional crop with high resistance to drought and barren. However, the molecular mechanism regulating anthocyanin accumulation and the relationship between anthocyanin and the stress resistance of foxtail millet remains obscure. In this study, we screened hundreds of germplasm resources and obtained several varieties with purple plants in foxtail millet. By studying the purple-leaved B100 variety and the control variety, Yugu1 with green leaves, we found that B100 could accumulate a large amount of anthocyanin in the leaf epiderma, and B100 had stronger stress tolerance. Further transcriptome analysis revealed the differences in gene expression patterns between the two varieties. We identified nine genes encoding enzymes related to anthocyanin biosynthesis using quantitative PCR validation that showed significantly higher expression levels in B100 than Yugu1. The results of this study lay the foundation for the analysis of the molecular mechanism of anthocyanin accumulation in foxtail millet, and provided genetic resources for the molecular breeding of crops with high anthocyanin content.
Collapse
Affiliation(s)
- Yaofei Zhao
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yaqiong Li
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoxi Zhen
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jinli Zhang
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qianxiang Zhang
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhaowen Liu
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shupei Hou
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yuanhuai Han
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bin Zhang
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
4
|
Genome-Wide Characterization of PIN Auxin Efflux Carrier Gene Family in Mikania micrantha. Int J Mol Sci 2022; 23:ijms231710183. [PMID: 36077586 PMCID: PMC9456128 DOI: 10.3390/ijms231710183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mikania micrantha, recognized as one of the world's top 10 pernicious weeds, is a rapidly spreading tropical vine that has invaded the coastal areas of South China, causing serious economic losses and environmental damage. Rapid stem growth is an important feature of M. micrantha which may be related to its greater number of genes involved in auxin signaling and transport pathways and its ability to synthesize more auxin under adverse conditions to promote or maintain stem growth. Plant growth and development is closely connected to the regulation of endogenous hormones, especially the polar transport and asymmetric distribution of auxin. The PIN-FORMED (PIN) auxin efflux carrier gene family plays a key role in the polar transport of auxin and then regulates the growth of different plant tissues, which could indicate that the rapid growth of M. micrantha is closely related to this PIN-dependent auxin regulation. In this study, 11 PIN genes were identified and the phylogenetic relationship and structural compositions of the gene family in M. micrantha were analyzed by employing multiple bioinformatic methods. The phylogenetic analysis indicated that the PIN proteins could be divided into five distinct clades. The structural analysis revealed that three putative types of PIN (canonical, noncanonical and semi-canonical) exist among the proteins according to the length and the composition of the hydrophilic domain. The majority of the PINs were involved in the process of axillary bud differentiation and stem response under abiotic stress, indicating that M. micrantha may regulate its growth, development and stress response by regulating PIN expression in the axillary bud and stem, which may help explain its strong growth ability and environmental adaptability. Our study emphasized the structural features and stress response patterns of the PIN gene family and provided useful insights for further study into the molecular mechanism of auxin-regulated growth and control in M. micrantha.
Collapse
|
5
|
Su N, Liu Z, Wang L, Liu Y, Niu M, Chen X, Cui J. Improving the anthocyanin accumulation of hypocotyls in radish sprouts by hemin-induced NO. BMC PLANT BIOLOGY 2022; 22:224. [PMID: 35490232 PMCID: PMC9055698 DOI: 10.1186/s12870-022-03605-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The health benefits of anthocyanins impel researchers and food producers to explorer new methods to increase anthocyanin contents in plant foods. Our previous studies revealed a positive role of nitric oxide (NO) in anthocyanin accumulation in radish (Raphanus sativus L.) sprouts. The application of hemin, an inducer of heme oxygenase-1 (HO-1), can effectively elevate NO production in vivo. Hemin treatment also improves plant growth and stress tolerance. This study is aimed to assess the effects of hemin treatment on anthocyanin production in radish sprouts, and to investigate whether NO signalling is involved in this process. RESULTS The application of hemin significantly up regulated the expressions of many anthocyanins biosynthesis related structure and regulatory genes, leading to increased anthocyanins accumulation in radish hypocotyls. Hemin treatment also raised NO contents in radish sprouts, probably through enhancing nitrate reductase (NR) activity and Nitric Oxide-Associated 1 (NOA1) expression. Comparing the effects of Zinc Protoporphyrin (ZnPP, HO-1 activity inhibitor), Sodium Nitroprusside (SNP, NO donor) and carboxy-PTIO (cPTIO, NO-scavenger) on anthocyanin and NO production, a positive role of NO signalling has been revealed in hemin-derived anthocyanin accumulation. A positive feedback loop between HO-1 and NO may be involved in regulating this process. CONCLUSIONS Hemin induced anthocyanin accumulation in radish sprouts through HO-1 and NO signalling network.
Collapse
Affiliation(s)
- Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ze Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yuanyuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
6
|
Zhang Q, Chen G, Huang J, Peng C. Comparison of the Ability to Control Water Loss in the Detached Leaves of Wedelia trilobata, Wedelia chinensis, and Their Hybrid. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091227. [PMID: 32961869 PMCID: PMC7570294 DOI: 10.3390/plants9091227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 06/02/2023]
Abstract
In the process of biological invasion, hybridization between invasive species and native species is very common, which may lead to the formation of hybrids with a stronger adaptability. The hybrid of Wedelia trilobata (an alien invasive species) and Wedelia chinensis (an indigenous congener) has been found in South China. In our previous study, we found that the hybrid showed heterosis under cadmium stress. However, the results of this experiment demonstrated that the leaves of the hybrid had no heterosis in controlling water loss. The results showed that the water loss rate of W. trilobata was the slowest, that of W. chinensis was the fastest, and that of the hybrid was in the middle. Compared with W. chinensis and the hybrid, W. trilobata accumulated more abscisic acid (ABA) in leaves to control water loss. After the leaves were detached, W. chinensis leaves suffered the most serious damage, the lowest maximum photochemical efficiency, the most serious membrane lipid peroxidation, and the largest accumulation of malondialdehyde and reactive oxygen species. Compared with W. chinensis and its hybrid, the leaves of W. trilobata could accumulate more antioxidant enzymes and antioxidants, and the total antioxidant capacity was the strongest. The results demonstrate that the ability of the hybrid to reduce water loss was lower than that of W. trilobata, but higher than that of W. chinensis. They showed that the drought resistance of the hybrid may be higher than that of W. chinensis, and it might threaten the survival of W. chinensis.
Collapse
|